
1

Simplifying Microservices by
Visualizing Your Application

Why the Logical Version of the
Application is still relevant. Tracy Ragan

CEO
DeployHub
@TracyRagan
Tracy@DeployHub.com

22

Today we use many ‘visibility’ tools for tracking an
application version.

Microservices obfuscate the view of the Application.

The impact is low confidence in deployments, ad hoc
updates, discovery via incident and an inability to be
pro-active.

We need to re-imagine CI and re-create the
visualizations for clarifying the Application.

CEO
@TracyRagan

Tracy Ragan

• CEO and Co-Founder – DeployHub, Inc.
• Founding Board member of the CD

Foundation
• Founding Board Member Eclipse Foundation
• DevOps Institute Ambassador,
• 20+ DevOps Experience.

Microservices are loosely
coupled and
independently deployed
functions that flow through
the Continuous Delivery
pipeline alone. They are
the foundation of business
agility.

Microservices create an
endless cycle of changes
moving out to K8s
clusters continuously.

What We Do Now
Monolithic Pipeline

Dev Test Prod

The all-important Check-in and Build – The Foundation of CD

Version 10 Version 8 Version 5

The CI Step:
• Pull
• Compile/Link the Application,

create a new version, generate
BOM, Diff and Impact Reports

• Deploy to Dev

The Test Step:
• Deploy to Test
• Run Test
• Approve for Prod

The Prod Step:
• Approve
• Deploy to Prod

We are taking our static
application and breaking it
into smaller puzzle pieces.

Microservices
 Vs. Monolithic

The New CI
Creates a Container – no “Integration” required.

Pull code based on labels, scan for
transitive dependencies.

Create a Docker Container that includes a
set services that change together.

Check-in to a Container Registry

Repeat for many new microservices.

Dev Test Prod

Dev Test Prod • Dev does not create
an “application” much
less tracks versions.

• You may not know
when a new version of
a service was released
– you now have a new
version of your
application.

The New CD Pipeline

Dev Test Prod

Microservice are Independent and Shared Across Applications

Only 15% of companies report ‘massive’ success with microservices.
O’Reilly Survey Business Wire December 201

https://www.businesswire.com/news/home/20181204005140/en/O%E2%80%99Reilly-Survey-State-Microservices-Maturity

What is Lost?
• Application Version Schema

• Impacts Testing
• Impacts Bug Tracking
• Impacts Value Stream

• Bill of Material Reporting
• How is the Application

Configured?

• Difference Reports
• What was new?

• Impact Analysis
• Should I release?

Visualizing
the Logical
View of the
Application

Domain Driven Design
Organizing Your
Microservices
• Domain Driven Design is where you

are managing an architecture based
on the microservice ‘problem space.’

• Domains can be defined based on
your organizational patterns. Start by
decomposing a few applications and
you will begin recognizing their
commonality. What is common are
potential domains.

• Login routines
• Database calls
• Logging

Configuration
Management
Critical Data for both developers and SREs:

• Tracking what microservices your
application consumes (Version and
BOM).

• Knowing when a particular
microservice is about to be updated or
has been (Difference Reports).

• What cluster is the new service active in
(Deployment Tracking).

• If I update a microservice who will I
impact (Impact Analysis).

Haunted Graveyards, Frankenstein
Clusters, when do we deprecate?

Reality of Configuration
Navigating the Deathstar

A Self-Service SaaS Solution for:

• Sharing Microservices based on a Domain Driven Design.

• Restoring and Mapping the “Logical” Application Versions.

• Deploying and Tracking Microservice Versions with

Deployment Data across clusters.

DeployHub
Microservice Configuration Management for Site Reliability, DevOps Engineers, and Release Teams

DeployHub Team
Hosted Open Source

Ortelius.io
Open Source Project

We open sourced the mapping - DeployHub
Team is free and based on our Open source
Project – Ortelius.io

Deploys to Dev/Test

DeployHub
Enhancing the CD Ecosystem with Visualization

Pulls SHA, Git Commit
and CR. Creates a new
microservice version for

sharing based on
Domains.

New Container
registered.

Dev &
Test

Prod
Establishes Logical

Application versions.

Provides BOM, Difference
and Impact Analysis Reports.

Code complete.

Change Request (CR)
Initiated.

Deploys to
Prod.

Providing Visibility into the Logical Application

BOM Report Impact Report

Difference Report

Results

Visibility gives Site
Reliability

Engineers the
confidence of

knowing what is
going on and the
ability to make

data-driven
decisions quickly

Takes the guess
work out of tracking
who is consuming

your microservices.
Saves 3-6 hours of

manual tracking
work per team each

week.

Microservice
sharing via

Domains reduces
redundant coding

by up to 50% and
creates a flexible

and dynamic
ecosystem.

Confidently deploys
microservices

across clusters with
the knowledge of

their impact, before
they land reducing

incidents and
confusion.

1616

LinkedIn: https://www.linkedin.com/in/tracy-ragan-oms/
Twitter: @TracyRagan
Calendar: https://drift.me/tracyragan/meeting/coffeechat
Email: TracyRagan@DeployHub.com
Dig In at: DeployHub.com or Ortelius.io

https://www.linkedin.com/in/tracy-ragan-oms/
https://twitter.com/TracyRagan
https://drift.me/tracyragan/meeting/coffeechat
mailto:TracyRagan@DeployHub.com

