
Click here or press enter for the accessibility optimised version

The Agile Service
Management Guide
By Jayne Groll, DevOps Institute
with Foreword from Denis Esslinger

https://devops.turtl.co/?accessible

Agile Service Management Guide

All Rights Reserved.
Copyright © 2021 by DevOps Institute

By Jayne Groll with Foreword from Denis Esslinger
Revised July 2021

This document may not be reproduced, transmitted, or stored in whole or in part by any means,
including graphic, electronic, or mechanical without the express written consent of the publisher.

Click here or press enter for the accessibility optimised version

FOREWORD
Denis Esslinger
ITSM and DevOps Evangelist

https://devops.turtl.co/?accessible

O
pportunities, plans, and
circumstances, both internal and
external to organizations, are

changing at an ever-increasing pace. External
unforeseen circumstances, like the COVID-19
pandemic, can suddenly require significant
alterations to business practices and the IT
services that support them. Agility is no longer
something organizations want to strive for – it’s
a necessity for business survival.

I met Jayne about 20 years ago at an ITSM
conference where she was talking about the
importance of breaking down silos in IT. She
advocated that IT teams needed to use
organization-wide processes to successfully
deliver value for customers. Since that time,
Jayne has continued to be a leader in advancing
people-centered practices to improve value
streams, including being a co-founder of
DevOps Institute.

This guide grew out of Jayne’s recognition that
end-to-end IT agility could only be achieved if
Agile thinking and practices were instilled into
every aspect of the management of products
and services before, during, and after
deployment. Much of Agile’s focus has been on
software development and deployment.
However, if the deployed software applications
are not consistently delivered at needed levels
of availability, capacity, security, and continuity,
little value will result from the deployed
software.

Now, more than ever, organizations need to be
agile and quickly adapt their IT services to
changing needs. Being agile is a never-ending
challenge. This guide helps provide a practical
framework to engineer and continually improve
your IT service management practices to ensure
services provide customer value as needs
continue to change ever more rapidly.

FOREWORD

Denis Esslinger, ITSM and DevOps Evangelist

Click here or press enter for the accessibility optimised version

TABLE OF CONTENTS

https://devops.turtl.co/?accessible

Introduction

Table of Contents

Chapter 1: Being Agile Chapter 2: What is Agile
Service Management?

Chapter 3: Agile Service
Management & Other

Frameworks / Practices

Chapter 4: Scrum Basics Chapter 5: What is Agile
Process Engineering

Chapter 6: An Agile Approach
to Process Engineering

Chapter 7: Agile Service
Management Roles

Chapter 8: Agile Service
Management Artifacts

Chapter 9: Agile Service
Management Events

Chapter 10: Agile Process
Improvement

Chapter 11: Automation and
Agile Service Management

Chapter 12: Getting Started APPENDIX: Agile Service Management Taxonomy About the Author

Click here or press enter for the accessibility optimised version

INTRODUCTION

https://devops.turtl.co/?accessible

The mandate remains the same but is more
urgent than ever: go faster but control costs and
risks. The ability to adapt to changing market
trends is essential for every business in order to
stay competitive and retain the current
customer base. Any vertical market may be the
target for disruption by a known competitor, an
unseen startup, or on the radar of aggressive
organizations such as Amazon. Disrupt or be
disrupted. Transformation is no longer an option
as we enter the “next normal” following the
2020 global pandemic. The directive from the
enterprise to IT is clear. Think like a start-up but
respect the bottom line. Be innovative and
internally disruptive. Speed, quality, and
reliability are your key metrics. Fail fast and
learn from it.

When I first authored the Agile Service
Management Guide in 2015, my primary
objective was to instill agile thinking into IT
Service Management (ITSM) process design.
Recognizing the similarities between software
development and process design cycles, I
wondered if the same incremental and iterative
approach put forth by Scrum could be adapted
to the design, implementation, and management

to the design, implementation, and management
of ITSM processes. Certainly, concepts such as
“minimum viable”, “just enough” and “user
stories” as well as the pillars of transparency/
inspection/adaptation could be applied to
process engineering.

Since that time, Agile Software Development is
now being practiced by millions of more
software engineers daily. Shippable increments
are getting smaller and smaller. Cloud and
hybrid environments are becoming normalized,
giving way to cloud-native applications and
containerization. Monolithic applications are
being broken down into microservice

INTRODUCTION
A lot has changed in just a few
short years. The rate of
technological adoption has
accelerated at a pace unseen
before. Automation is integrated
into just about everything we do,
both personally and professionally.
User expectation around technical
services is always on, always
reliable, always delivering value,
and always doing more.

being broken down into microservice
architectures. Enterprise interest in emerging
practices such as continuous delivery/
deployment, automated testing, serverless,
Kubernetes, and reliability engineering is on the
rise. Delivering value is the prime directive and
value stream management is replacing
traditional service management Open source
applications are being utilized by developers
around the world and those same developers
may be responsible for writing, building, testing,
deploying, and securing their code.

IT culture is shifting too. A few years ago, IT
governance was considered the path to
business and IT alignment and was reflected in
service management processes such as IT
Change Management. Today, Change
Management is under the microscope as being
too restrictive as self-organizing hybrid product
teams are supplanting traditional development,
operations, and security silos. Process,
automation, and “human skills” are considered
equally important according to DevOps
Institute’s annual Upskilling: Enterprise DevOps
Skills Survey and Report. Interoperability
between humans is as important as
interoperability between automation in order to
increase flow. Lightweight interoperable
processes and tools are needed to support both
technical and human interoperability.

IT organizations must adopt a service-oriented
approach to efficiently and effectively meet
changing business needs. Rapidly changing
business requirements require rapidly changing
organizational capabilities.

Is IT Service Management (ITSM)
Still Relevant in the Next Normal?

There have been some significant paradigm
shifts with approaches such as Agile, DevOps,
and Site Reliability Engineering. There will be
more. How does ITSM interact with these
approaches, if at all? Before we dive into the
details of Agile Service Management, let’s
explore the ongoing relevancy of IT Service
Management itself.

What is a Service?

While there are many definitions of a “service”,
here’s what I believe –

A service enables the ability to do something
when and how it is needed or desired. It enables
its customers to achieve their objectives more
efficiently and/or more effectively than they
could without the service.

A service exists purely to “serve” the objective of
its end customer (human or technical) and is
only perceived to create value if the service
delivers on its promise for timeliness and

https://devopsinstitute.com/upskilling-3/
https://devopsinstitute.com/upskilling-3/

delivers on its promise for timeliness and
quality. In today’s fickle and competitive “app”
culture, a service that does not deliver value
quickly and efficiently is replaced with one that
does.

A service may be comprised of multiple
products, applications, databases,
infrastructure, platforms, and environments.
Separately, most of these elements do not
create value for the end customer. However,
when federated into a “service”, value is
perceived because the outcome is achieved on
time, cost, and quality.

What is IT Service Management?

“IT Service Management is adopting a process
approach towards management, focusing on
customer needs and IT services for customers
rather than IT systems, and stressing continual
improvement.” Source: Wikipedia

IT Service Management focuses on ensuring IT
services deliver value by understanding and
optimizing their end-to-end value streams. All
services need to be managed in order to deliver

services need to be managed in order to deliver
customer value, regardless of which approach,
framework, or methodology is applied. IT
Service Management, therefore, underpins just
about everything IT does in order to deliver
valuable services including:

Service Levels

Changes

Releases

Configurations

Incidents

Problems/Root Cause

Requests

Events/Monitoring

Capacity

Availability/Reliability

One consideration affecting IT service
management is the evolution from project to
product management with its faster, more
frequent iterations and no finish line. This
paradigm shift has caused some friction
between traditional command and control ITSM
processes and the self-regulating systems of
Agile, DevOps, and Site Reliability Engineering.
In order to align with new requirements,
organizations should review their ITSM
governance model that was once a driving force
behind traditional ITSM.

The question, therefore, is not whether ITSM is
still relevant or even how to manage services in
an Agile, DevOps, and digital transformation
world. The real question is how much IT service
management is just enough in order to create
consistent customer value and compete in a
fast-paced disruptive world. That’s Agile Service
Management.

Availability/Reliability

Security

Continuity

Click here or press enter for the accessibility optimised version

CHAPTER ONE:
Being Agile

https://devops.turtl.co/?accessible

The MacMillan Dictionary defines “agile”
as:

ag·ile
/ˈajəl/ | adjective

Able to move quickly and easily;
able to think quickly, solve
problems, and have new ideas.

Too often in IT, the term “Agile” is used to
describe Agile software development, Scrum or
Scaled Agile practices. While these are all
excellent frameworks, the application of Agile
practices to software development does not in
and of itself increase an organization’s agility.
As many have learned, Agile software
development teams are often frustrated by
delays from downstream activities.

Agility must span the entire value stream. It is
more important to “be agile” than to “do Agile”.

Being agile is a state of mind. It is more
perspective than prescription. In order for an
organization to “be agile,” it must also be:

The Agile Manifesto

The underlying concepts of agile software
development were first laid out in the Agile
Manifesto in 2001.

The Agile Manifesto was supported by twelve
principles as paraphrased below:

1. The highest priority is to satisfy the
customer

2. Welcome changing requirements even if
late in the development cycle

Customer-centric
Lean
Collaborative
Communicative
Adaptive
Measurable
Consistent
Results-oriented
Reflective

Being Agile
If we can agree that ITSM is still
relevant, how then does it become
“agile”?

The Agile Manifesto

late in the development cycle
3. Deliver working software frequently
4. Business and IT must work together daily
5. Give motivated people what they need and

trust them to get the job done
6. Face to face is the best way to

communicate
7. Working software is the most important

measurement of progress
8. Agile processes promote sustainable

development
9. Be simple – maximize the amount of work

NOT done
10. Self-organizing teams create the best

architectures, requirements and designs
11. Teams should regularly reflect on and

readjust their behavior to become more
effective

12. Continually grow the team’s technical
excellence and design skills

The spirit of the Agile manifesto has never been
more relevant and the underlying principles
should form the basis for managing the entire IT
value stream from ideation to value creation.

To the ITSM community, the Agile Manifesto
may initially seem to discredit everything that
ITSM stood for including processes, tools,
plans, documentation and service level
agreements. Not true. The Agile Manifesto does
not suggest that the items on the right have NO
value. It’s a reminder that the items on the left
have MORE value and therefore a caution not to
prize the artifacts on the right over the
outcomes on the left. It’s a reminder that we
should do “just enough” of the items on the right
in order to deliver on the promises of the left.

Click here or press enter for the accessibility optimised version

CHAPTER TWO:
What is Agile Service
Management?

https://devops.turtl.co/?accessible

Agile Service Management adopts Agile
principles to IT service management processes
by implementing IT Service Management in
small, integrated increments. This approach
ensures that IT Service Management processes
reflect Agile values from initial design through
continuous improvement.

The goals of Agile Service Management are:

To achieve these goals, Agile Service
Management strives to:

Ensuring IT Service Management processes
help create value for customers
Ensuring holistically that all IT Service
Management processes are coordinated and
interoperate smoothly
Ensuring there is the least amount of process
control for the greatest amount of speed,
quality, and compliance

Optimize processes across the organization’s
value streams
Make sure that agile values and systems
thinking are instilled in IT Service
Management processes

It is important to note that Agile Service
Management does not reinvent or replace the
guidance from other frameworks such as
ITIL®→ or Site Reliability Engineering. By itself,
Agile Service Management is not an ITSM
framework that defines principles, processes,
and procedures. Agile Service Management is
an enabler of faster, more adaptable IT Service
Management regardless of framework. By
embracing the “just enough” spirit of the Agile
Manifesto, the incremental and iterative
approach of Scrum, key practices from ITIL®/
ITSM, value stream management, Continuous
Delivery, and Site Reliability Engineering, Agile
Service Management focuses on having the
least amount of process control for the greatest

Management processes
Enable a faster flow of software delivery by
defining “just enough” IT Service Management
Engineer an integrated Agile Service
Management microprocess architecture
Find the balance between an IT Service
Management governance model and a self-
regulating system
Optimize the use of automation to execute
process tasks and to manage artifacts

What is Agile
Service
Management?
Agile Service Management (Agile
SM) ensures that IT service
management processes reflect
Agile values and are designed with
“just enough” control and structure
to enable the delivery of services
that enable the ability to do
something when and how they are
needed or desired.

least amount of process control for the greatest
amount of speed, quality, and compliance.

One of the key principles of Agile Service
Management is the decoupling of monolithic
processes into multiple microprocesses that
can be designed and managed separately.
Microprocesses can integrate with other
microprocesses from the same or other IT
Service Management practices. This flexible
“plug and play” approach encourages systems
thinking and allows activities from multiple IT
service management practices to be built in
close alignment with each other. A good
example of this would be developing a
microprocess for recording changes at the
same time as a microprocess for recording
incidents so that the two could be cross-
referenced.

The key benefits of taking an Agile Service
Management approach include:

Increased value to customers
The ability to meet customer requirements
faster and more accurately
Overcoming constraints in process flows

Agile Service Management has cultural benefits
too. By creating a common approach to
practices from multiple frameworks, Agile
Service Management helps to instill systems
thinking that reduces handoffs, optimizes
automation, and creates a common language
drawn from multiple sources.

Overcoming constraints in process flows
Increasing the effectiveness and efficiency of
ITSM processes
Improving the collaboration between
development, operations, security, and the
business
Improving the velocity of the process
improvement team
Getting more “done”

Key Terms

Service Management Practice: an end-to-
end capability for managing a specific
aspect of service delivery (e.g., changes,
incidents, service levels) that is built on a
microprocess architecture

Process: interrelated work activities that
take specific inputs and produce specific
outputs

Microprocess: a distinct activity that can
be defined, designed, implemented, and
management independently but is
integrated and interoperable with other
microprocesses

Microprocess Architecture: A collection
of integrated microprocesses that
collectively perform all of the activities
necessary for an end-to-end service
management practice to be successful.

The Two Aspects of Agile Service
Management

There are two aspects of Agile Service
Management: Agile Process Engineering and
Agile Process Improvement.

Agile Process Engineering is the aspect of Agile
Service Management that applies an Agile
approach to process engineering similar to an
Agile approach to software development.

Agile Process Improvement is the aspect of
Agile Service Management that aligns Agile
values with processes through continuous
improvement.

Agile Process Engineering

Agile Process Engineering (formerly Agile
Process Design) is an iterative and incremental
approach to designing a process that replicates
many of the practices used in Agile software
engineering – short, iterative designs of
potentially shippable Increments or
microprocesses. By focusing on the “minimum
viable” or “just enough” level of process control,
Agile Process Engineering supports a “shift left”
mentality so as to engage ITSM practices much
earlier in the value stream. Smaller increments
of microprocesses support faster deployments,
better compliance, and more knowledge
captured at the source. This approach also
allows ITSM practices more time to be
institutionalized and normalized by the people
who execute the practices, microprocesses, and
procedures.

Agile Process Engineering requires an IT service
management architecture that supports
systems thinking that spans the entire value
stream. The architecture is engineered much
like software where interoperability in a complex
system is essential.

system is essential.

Agile Process Engineering also aligns with the
goals and objectives of a microservice
application architecture that structures an
application as a collection of independent
“services “

Microservices should be managed by
microprocesses. We will define and discuss
microprocesses and Service Management
practices further in Chapter 4.

Agile Process Improvement

Agile Process Improvement ensures that ITSM
agility introduced through Agile Process
Engineering is continually reviewed and
adjusted as part of the ITSM’s commitment to
continual service improvement. The goal is to
identify and mitigate any constraints that may
be affecting both the flow of the service
management practice, microprocess, and
general flow of the value stream. Agile Process
Improvement is the watch guard over
unintentional process bureaucracy.

During this repetitive stage, Practice Owners
conduct regular reviews with other teams and
stakeholders to ensure that ITSM processes are
still providing value and have not drifted from
“just enough” to “too much” or “not enough”.
Agreed improvements are captured in the
practice’s Practice Backlog and engineered as
part of Continual Service Improvement (CSI)
sprints.

Since Agile Process Engineering creates a
service management architecture built on
interoperable microprocesses, Agile Process
Improvement can manage and deploy
improvements to a single microprocess or an
entire service management practice, allowing IT
service management programs to adapt to
changing business requirements faster. We
explore Agile Process Improvement further in
Chapter 10.

Click here or press enter for the accessibility optimised version

CHAPTER THREE:
Agile Service
Management and
Other Frameworks /
Practices

https://devops.turtl.co/?accessible

When I first authored the Agile Service
Management Guide, ITSM and ITIL® were often
considered to be virtually synonymous. Since
then, frameworks and methods such as DevOps,
Site Reliability Engineering (SRE), Lean IT,
Scaled Agile (SAFe) and a new release of ITIL®
have emerged. Each of these have inspired new
ideas and new approaches to the problem of
delivering and managing services in a
technology-centric world. It is important to note
that while each of these frameworks have merit,
were authored by talented industry experts, and
contain very useful advice, none are perfect and
none are a complete end-to-end solution. Agile
Service Management encourages the
exploration and adoption of guidance from
multiple sources in order to create a proprietary
“just enough’ ITSM program that is customized
to the organization’s requirements.

Let’s look at the most prominent process
frameworks and models trending today.

Scrum
According to the 2017 Scrum Guide, Scrum is a
framework within which people can address
complex adaptive problems, while productively
and creatively delivering products of the highest
possible value. Scrum is:

Recognizing the similarities between software
engineering and process engineering, Agile
Service Management loosely adopts the
principles and processes from the Scrum
Framework and applies them to IT Service
Management. We will explore this further in
Chapter 5.

DevOps
DevOps is a cultural and professional movement
that stresses communication, collaboration, and
integration between software developers and IT

Lightweight
Simple to understand
Difficult to master

Agile Service
Management
and Other
Frameworks /
Practices
As mentioned before, Agile Service
Management does not redefine the
inputs, outputs, or metrics of
processes such as IT Change or
Incident Management. There are
some great frameworks in place
that already do this. Agile Service
Management does define a model
for engineering any process in an
incremental and iterative way. The
principles and model can be
applied to the adoption of one or
more IT or even enterprise service
management frameworks.

Agile Software Development

integration between software developers and IT
Operations professionals while automating the
process of software delivery and infrastructure
changes. Gene Kim, lead author The Phoenix
Project, IT Revolution Press

On its own, DevOps is not a framework,
standard, or methodology. It is a set of guiding
values and principles that crosses multiple
domains, tools, and practices including
development, operations, security, and reliability.

Agile Service Management aligns with the
principles of The Three Ways of DevOps as
described in The Phoenix Project by Gene Kim,
et al. An incremental approach to process
engineering can remove constraints and
increase flow across multiple processes (First

increase flow across multiple processes (First
Way), shorten feedback loops on process
performance and improvement (Second Way)
and encourage a collaborative, experimental
and learning environment between various IT
teams and frameworks (Third Way).

Continuous Delivery/Deployment

Continuous delivery is a methodology that
focuses on making sure software is always in a
releasable state throughout its lifecycle.
Continuous Deployment automatically releases
the software into production.

Continuous Delivery is one of the main
crossroads where Agile Service Management
and DevOps can meet and align. Continuous

and DevOps can meet and align. Continuous
Delivery relies heavily on automation to perform
many of the activities associated with Release
Management including building, testing, staging,
securing, and releasing software. However,
intelligent automation needs intelligent
processes as shown in the Upskilling: Enterprise
DevOps Skills Report. Agile Service
Management can underpin Continuous Delivery/
Continuous Deployment by defining lightweight
interoperable microprocesses while Continuous
Delivery automation can reduce IT service
management toil. Best yet, since both are
engineered (or re-engineered) in increments, the
process, the automation, the metrics, and the
artifacts can be defined and implemented
simultaneously.

Source: The Phoenix Project, Kim, et al, IT Revolution

Lean Practices

Value Stream Management

Value stream management is a management
approach that focuses on the end-to-end flow of
customers, their challenges, and ideas (as
input) to target business value (as output)
through best practices and by the elimination of
wasted time and resources.

Value stream management helps determine the
value of software development and delivery
efforts and resources. It also helps to improve
the flow of value to the organization, while
managing and monitoring the software delivery
life cycle from end to end. Source: Forbes
Technology Council

A value stream is the sequence of activities
required to design, produce, and deliver a
specific product or service and streams typically
span multiple processes. Value streams allow
teams to identify areas of non-value creation
waste and to identify, prioritize and measure

waste and to identify, prioritize and measure
improvements.

Value stream mapping and value stream
management have emerged as key tools for
visualizing, understanding, and managing how
value is created for the customer. This is not
merely renaming a flowchart or replacing a
service lifecycle diagram. By managing a value
stream, the entire organization focuses on the
customer’s perception of value and how the
organization manages value creation on an
ongoing basis. The net result is that value
stream management requires everyone involved
to shift towards systems thinking and away
from silos.

Since value streams cross multiple processes,
taking a microprocess approach as defined by
Agile Service Management allows processes to
be built incrementally and in alignment with
each other. Sometimes the biggest constraint to
flow may be unintended bureaucracy or
complex end-to-end processes that were
designed in isolation. Agile Service
Management helps to overcome those
constraints.

constraints.

Kanban

Kanban is a method of work that pulls the flow
of work through a process at a manageable
pace. A Kanban board, therefore, makes work
visible, reduces work in progress, helps teams
collaborate, and supports the “definition of
done”. Kanban boards are used by many Agile
software development teams to manage user
stories, backlogs, and sprints. Since Agile
Service Management adopts the concept of
user stories, backlogs, and sprints, a Kanban
can be a useful tool for managing practice
backlogs, strategic, process, and continuous
improvement sprints. Most importantly, whether
in use for software or process engineering, a
Kanban can be particularly helpful in
understanding and managing team velocity.

IT Service Management
Frameworks

ITIL® 4

For over three decades, ITIL® has been the most
widely accepted and adopted framework for
managing IT Services. ITIL® provides a
framework that organizations can adapt to
deliver and maintain IT services to provide
optimal value for all stakeholders including the
customer. It provides guidance and structure to
practices such as change enablement, service
configuration, deployment, release, incident, and
problem management.

With an incremental release of the library
starting in 2019, ITIL® 4 remains true to its
heritage as an IT governance model but with
closer alignment to modern practices such as
Agile and DevOps.

ITIL® 4 embeds elements of V3’s Service
Lifecycle into a Service Value System (SVS) with
a more visible focus on service value and

a more visible focus on service value and
outcomes. Where ITIL® V3 had 26 processes,
ITIL® 4 defines 34 “practices” for managing
services in a complex multi-domain
environment. The migration from “process” to
“practice” may seem semantic, but the goal was
to instill a sense of capability instead of a sense
of rigid process.

Like SRE or Scrum, ITIL® 4 embeds a set of core
principles into ITIL® 4, adapting from those
originally introduced in the ITIL® Practitioner:

The introduction of ITIL® 4 may inspire
organizations to reimagine their IT Service
Management models and re-engineer some of
their processes or practices to line up with Agile,
DevOps, SRE, and Continuous Delivery
ecosystems. I would encourage those looking at
ITIL® 4 to review the current state of their
process adoption and analyze whether they are
at “just enough”, “too much” or “not enough”
based on individual requirements,
transformation efforts, and compliance.

Site Reliability Engineering

Site Reliability Engineering (SRE) is a discipline
that incorporates aspects of software
engineering and applies them to infrastructure
and operations problems. Inspired by Google’s
book series of the same name, SRE has gained
global interest due to its goal of creating ultra-
scalable and highly reliable software systems.
The role of a Site Reliability Engineer has also
emerged as a desirable and hirable job whose
team is empowered to regulate its own
workload, make tomorrow better than today and
use failure as an opportunity to improve.

By its own admission, SRE is Google’s approach
to service management and is likely the most
innovative approach to ITSM since the early
days of ITIL®. The guidance provides insight on
service management practices such as service
level, change, incident, capacity, availability and
other traditional ITSM practices.

The principles of SRE are founded on a self-
regulating system that aligns closely with Agile
software development and DevOps

While Agile Service Management is built around
the pillars of Scrum, there is a close alignment
to the Site Reliability Engineering principles of
eliminating toil, empowering teams, optimizing
automation and maintaining simplicity. The
creation of a microprocess architecture that
allows SRE and Development teams to
autonomously adopt a small set of rules and
“just enough” structure should appeal to Site
Reliability Engineering teams.

Observability

The concept of observability is quickly gaining
acceptance as the more modern way to
establish monitoring and event management
practices.

Based on control theory, observability is a
measure of how well internal states of a system
can be inferred from knowledge of its external
outputs. This approach is now being adopted by
global IT organizations that are managing
complex interoperable environments and need
more than reactive monitoring to understand the
state of their systems.

Observability takes monitoring and event
management to a whole new level. No longer
are we monitoring for reactive issues such as
capacity, availability or throughput thresholds.
No longer are we satisfied with proactive
system health monitoring. Observability is much
more than being reactive or proactive – it now
creates an environment where operations and
development can infer the state of the internal
system based on external conditions. It does
not replace monitoring but adds a level of
insight and abstraction that may not have
amalgamated before.

Enterprise Service Management

The success of IT service management
practices has inspired organizations to extend
the concepts beyond IT as Enterprise Service
Management (ESM). ESM applies many of the
same principles, practices and processes to
business services – particularly those that the
business supplies to its internal customers from
business units such as HR or Finance. Many of
the well-established ITSM vendors such as
BMC, Cherwell and ServiceNow have extended
their products to accommodate ESM.

their products to accommodate ESM.

Since Agile Service Management is not aligned
to a particular ITSM framework, the same
approach can be applied to any process
engineering effort including Enterprise Service
Management.

ISO/IEC 20000:1 2018

ISO/IEC 20000 is the auditable international
standard for IT Service Management that
specifies the “requirements for an organization
to establish, implement, maintain and
continually improve a service management
system (SMS) including the planning, design,
transition, delivery and improvement of services
to meet the service requirements and deliver
value.”

Click here or press enter for the accessibility optimised version

CHAPTER FOUR:
Scrum Basics

https://devops.turtl.co/?accessible

The Scrum Guide defines Scrum as:

Scrum is founded on empirical process
control where knowledge comes from
experience, decisions are based on what
is known and three pillars (Transparency,
Inspection, and Adaptation) underpin the
entire framework.

The Scrum framework is built around
interactions and rules that govern roles,
artifacts, and events.

3 Roles (Product Owner, Scrum Master,
Development Team)
3 Artifacts (Product Backlog, Increment,
Sprint Backlog,)
5 Events (Sprint Planning, The Sprint, Daily
Scrum, Sprint Review, Sprint Retrospective)

Scrum Basics
While there are several solid
frameworks and methods for Agile
software development, I have
chosen to loosely model Agile
Service Management after the
Scrum Framework. Scrum is
lightweight, simple to understand,
embodies empirical thinking, and
reflects the core values of the
Agile Manifesto. While the context
may be different, the core Scrum
iterative and incremental guidance
can be adapted to process
engineering and improvement.

Agile Service Management retains the
interactions and rules but adapts the roles,
artifacts, and events to IT service management
process engineering

I would encourage those interested in Agile
Service Management to develop a deeper
understanding of Scrum in order to internalize
the similarities between the process of
developing software and the process of
developing ITSM processes. You can download
the full Scrum Guide for free at
https://www.scrumguides.org/.

3 Roles (Practice Owner, Agile Service
Manager, Agile Service Management Team)
3 Artifacts (Practice Backlog, Increment,
Sprint Backlog)
6 Events (Planning, Sprint, Sprint Planning,
Process Standups, Sprint Review, Sprint
Retrospective)

https://www.scrumguides.org/

Click here or press enter for the accessibility optimised version

CHAPTER FIVE:
Agile Process
Engineering

https://devops.turtl.co/?accessible

Engineering Agile Processes

Agility is a state of mind that centers around
speed, collaboration and adaptability. Agility
requires a conscious effort to limit delay,
overcome impediments and avoid unnecessary
complexities. Agility is where it is more
important to “be agile” than “do Agile”

Since early ITSM adoption defined processes
that were designed to provide evidence of IT
Governance and controls, some IT service
management processes such as IT Change
Management grew layers of bureaucracy that
were accompanied by inherent delays and in
many cases a “one-size-fits-all” approach. While
the intentions were honorable, the resulting
processes were overburdened and not fit for the
purpose intended. If unchecked, even agile
processes can become unwieldy particularly in
large, regulated organizations looking to scale.

An agile process is one that delivers “just
enough” structure and control to enable the
organization to achieve its service outcomes in
the most expeditious, effective, and efficient
way possible. An agile process is easy to

way possible. An agile process is easy to
understand, easy to follow, and prizes its
collaboration and outcomes more than its
artifacts.

The characteristics of an Agile process include:

Agile processes must be engineered much like
software where interoperability in a complex
system is essential.

Having an accountable owner (Practice
Owner)
Clarifying everyone’s roles and responsibilities
Allowing for self-regulation, with
consequences
Benchmarking itself against Agile values and
principles
Being as simple, lean, efficient, and expedient
Being scalable
Adapting to change
Optimizing automation for repetitive tasks
Encourages accountability and autonomy
Can be executed by people, other processes,
or automation

Agile Process
Engineering
Agile Processing Engineering
promotes a more adaptive
approach by:

Breaking a monolithic process into an
architecture of independent
microprocesses
Taking a holistic approach to building,
maturing, and integrating related
microprocesses
Designing each microprocess in smaller,
more frequent iterations
Encouraging shortened feedback and
feed-forward loops
Shaping future increments based on
current business conditions
Giving process practitioners more time to
absorb new behaviors
Getting more “done” and delivering value
more quickly

Practices vs Processes

Taking a page from ITIL® 4, what was previously
represented as an ITSM process might today be
considered a broader “practice”. A service
management practice is a complete end-to-end
capability for managing a specific aspect of
service delivery (e.g., changes, incidents, service
levels).

Under Agile Service Management, a service
management practice is built on a microprocess
architecture.

Examples of practices or practice areas would
include:

This is more than semantics. A service
management practice is successful not
because of a flat and linear flowchart but from
the combined power of the people,
microprocesses, and automation that manage a

Service Level Management
Change Management
Release Management
Incident Management

microprocesses, and automation that manage a
specific aspect of services – whether it's
managing changes or incidents, or requests.
Looking at service management as a matrix of
integrated and inclusive practice areas ensures
that agility is embedded into every aspect of the
organization’s value stream.

In Agile Service Management, a practice is built
on an architecture of microprocesses that can
be defined, designed, implemented, adapted,
and improved independently. A Practice Owner
is accountable for the service management
practice and is an accountable collaborator on
the structure and use of the microprocess
architecture.

Microprocesses

A microprocess is a distinct activity that can be
defined, designed, implemented, and managed
independently. A microprocess is generally
associated with a primary service management
practice but may be integrated with other
service management practices. A microprocess
can be defined as having its own inputs,
outputs, activities, triggers, and defined
outcomes. It may have its own artifacts or be
part of one or more shared artifacts such as
plans, tools, or maps.

Microprocesses are the foundation upon which
an incremental and iterative approach to Agile
Service Management can be based. Treating
service management activities as
microprocesses allows the organization to build
service management practices in small,
frequent releases that can deliver immediate
value to the overall ITSM goal.

Why are microprocesses important to service
management? Traditionally, service
management practices are defined with a
sequential series of activities that take an input

sequential series of activities that take an input
and produce an output. In a microprocess
architecture, each activity delivers its own value
and can stand on its own. Its input can come
from different sources and its outputs may be
inputs to another microprocess or even another
service management practice.

For example, the first microprocess for IT
Change Management might be about “recording
all changes”. This is a distinct activity with its
own inputs, outputs, activities, triggers. The
benefit of having more transparency into
changes would not only affect IT Change
Management but would be useful to practice
areas such as Incident Management, Service
Level Management, among others. Approaching
this activity as a microprocess also encourages
dialogue about how much is “just enough” detail
about each change to provide value. This
microprocess could provide metrics on change
success, team velocity, etc.

Microprocess Architectures

A microprocess architecture is a collection of
integrated microprocesses that collectively

integrated microprocesses that collectively
perform all of the activities necessary for an
end-to-end service management practice to be
successful. Microprocess activities could be
linear or nonlinear so that some are done in
parallel or be recursive..

As DevOps, containerization, cloud
architectures, and service management
practices have evolved, Agile Service
Management has similarly evolved and now
decouples monolithic service management
practices into a microprocess architecture. The
microservice architecture enables ITSM to
adapt to changing business requirements or to
improve discrete aspects of a process without
having to re-engineer the entire process (but
with interoperability and integration always in
consideration.)

A microprocess architecture is built on an
interrelated collection of microprocesses that
are:

Highly maintainable and testable
Loosely coupled
Independently deployable

Independently deployable
Have their own feedback loops
Interoperable with multiple processes
Organized around business capabilities
Owned by a small team

Microprocess Architecture

Service Management Architecture

The service management architecture will be a
matrix of integrated practices (and their
respective microprocesses) that collectively
ensure that services deliver the expected value
when and how they are needed. The service
management architecture supports systems
thinking and therefore strives to adapt to all of
the people, processes, automation, and
information that span the entire value stream.

Ownership of the Service Management
Architecture is a collaborative effort by the
individual Practice Owners who will collectively
adopt and integrate microprocesses and other
practices into their ITSM “recipe”.

Service Management Architecture

Click here or press enter for the accessibility optimised version

CHAPTER SIX:
An Agile Approach to
Process Engineering

https://devops.turtl.co/?accessible

While the waterfall model is associated with
software development, earlier ITSM frameworks
were authored when waterfall development and
project management were common so the
process design projects were built in a similar
cadence. While the bodies of knowledge behind
ITIL® and other ITSM frameworks did not
necessarily promote a waterfall or bureaucratic
approach, typical ITSM process roadmaps were
positioned as multi-year where one or two
monolithic processes were defined, designed,
and deployed sequentially.

There are several challenges when applying a
waterfall model to designing a complete service
management practice or even a microprocess.
These include:

The rigidity of a sequential approach
User feedback that comes late in the process
The delays, rework, and additional costs
resulting from user feedback and testing
errors
The need for integration with processes not
yet in design
The extensive time required to build and
deploy an entire end-to-end process

Agile Process Engineering promotes a more
adaptive approach by:

deploy an entire end-to-end process
The learning curve that users will experience
when trying to normalize an entire process
and its procedures
The risk that the resulting process will no
longer fit the needs of its customers or deliver
on promised outcomes when and how
needed

Breaking a monolithic process into an
architecture of independent microprocesses
Designing each microprocess in smaller, more
frequent iterations with its dependencies and
successors in mind
Encouraging shorter feedback and feed-
forward loops
Shaping future increments based on current
business conditions
Taking a holistic approach to building,
maturing, and integrating related
microprocesses
Giving users time to absorb and
institutionalize new behaviors
Getting more “done” and delivering value

Waterfall vs
Agile Process
Engineering
The waterfall model is a sequential
approach to software development
where each phase of the
development flows the project
further downward until the product
is built, tested, deployed and ready
to maintain.

The net result will be a service management
practice architecture that delivers “just enough”
structure and control while

How much is “just enough” process? The
answer will vary from organization to
organization, service to service, and practice to
practice. Business requirements, governance,
risk, and compliance will be important factors.
Identifying the balance between “just enough”
and “too much” process will take time,
experimentation, and stakeholder engagement.

Getting more “done” and delivering value
more quickly

Tying success measures to business
outcomes
Engaging stakeholders and soliciting input
and feedback
Enabling effective communication
Integrating with other processes and
frameworks
Introducing timely improvements
Having simple documentation
Applying product management techniques
over project management plans

experimentation, and stakeholder engagement.
Service Level Objectives will also likely be a
driving force.

To start, it is best to create a Minimum Viable
Process (MVP).

Minimum Viable Process

A Minimum Viable Process is the least amount
needed in order for this process or
microprocess to meet its Definition of Done.
Every practice and microprocess should
therefore first strive to find its Minimum Viable
Process.

Like a Minimum Viable Product in software
development, a Minimum Viable Process has
three characteristics:

1. It has enough value that people are willing
to use it initially

2. It demonstrates enough future benefit to
retain early adopters

3. It provides a feedback loop to guide future
capabilities

It is much easier to add to a practice or
microprocess gradually for scale than it is to
revert to a lighter level later. A MVP approach
ensures that the core elements and goals of a
practice or microprocess are discussed,
understood, designed and introduced first. It
strips away the “wants” from the “needs” and
provides a basis for ongoing dialogue and
feedback so that future development will
provide continued value to those who rely on the
practice or microprocess.

One of the other key advantages of starting with
a Minimum Viable Process is the ability to
experiment with microprocesses and remediate
quickly if necessary. Not only is this in line with
the Three Ways of DevOps, but it also allows
MVP microprocesses to be designed and
deployed much more quickly. Minimum Viable
Process is the launchpad for identifying “just
enough” and can be used for new or re-
engineered processes.

To find the Minimum Viable
Process, you may want to start
with this question:

“What is the least amount that we would
need to do in order for this practice or
microprocess to meet our immediate
goals or requirements?”

Pick an easy microprocess that is a distinct
activity that everyone recognizes such as
documenting incidents.

Sample questions:

“What is the least amount of information that
we need to capture an incident?
“What are the minimum time requirements for
when the incident should be recorded?
“What is the fastest, most efficient way of
communicating the incident to key
stakeholders or teams that need to be
engaged?
“What is the easiest and most sustainable
tool for collecting incident data and to follow

While the questions are important, the dialogue
is more important, particularly if the right people
are asked the right questions. A skilled Practice
Owner will be able to keep the Agile Service
Management Team and stakeholder
discussions focused on “least” and “minimum”
to avoid the risk of “just in case” complexity
layers that make a process more difficult and
cumbersome.

The Agile Service Management Team should be
comfortable deploying an MVP microprocess
quickly but must also recognize that the first
MVP release is likely not perfect. Soliciting
constructive input and feedback from those that
are executing the microprocess will help with

tool for collecting incident data and to follow
its progress?”
“How will we know this microprocess is
successful?
“What are the expected outcomes?”
“How will this microprocess support the
Incident Management practice as a whole and
other service management practices?”
“Are there any risks or requirements that we
are not considering at this point?”

are executing the microprocess will help with
the next iteration.

Each MVP microprocess contributes to the
overall success of the service management
program. By taking an experimental, MVP
approach, the Practice Owners, Agile Service
Managers, and Agile Service Management Team
continuously learn and improve.

Now that we have an understanding of the
basics, let’s go into more detail about adapting
the roles, artifacts, and events of Scrum to Agile
Process Engineering.

Click here or press enter for the accessibility optimised version

CHAPTER SEVEN:
Agile Service
Management Roles

https://devops.turtl.co/?accessible

Scrum Role
Agile Service
Management Role

Product Owner Agile Product Owner

Scrum Master Agile Service Manager

Scrum Team
Agile Service
Management Team

In Agile Service Management, there are three
clearly defined roles.

A “Team” may be accountable for a single
microprocess or a complete service
management practice. The Agile Service
Management Team may also participate in Agile
Service Management events for a related
practice or microprocesses.

Agile Practice Owner
Agile Service Manager
Agile Service Management Team (the “Team”)

Characteristics of an Agile Service
Management Team

An Agile Service Management Agile Service
Management Team is:

A self-managing team understands what it
takes to get things done. For each increment of
work, they are provided a goal, a backlog of
tasks, a completion date, and a clear and shared
Definition of Done. The Agile Service
Management Team agrees on an approach for
completing the work and meeting the goal.
Essentially, the Agile Service Management Team
is given the “what”; they collectively determine
the “how.”

Self-managing
Cross-functional and cross-skilled
Multi-domain
Without egos or titles
Without sub-teams
Accountable for the work produced as a
whole regardless of individual skills or
experience

Agile Service
Management
Roles
The essence of Scrum is a small
team of flexible and adaptive
people. Small teams then become
part of the fabric of interactive and
collaborative networks of humans
that define, design, deploy and
improve agile practices across the
value stream.

The same holds true for Agile
Service Management. Small teams
of people can focus on a
microprocess as part of a network
of other teams that are working on
microprocesses from the same or
different practice.

Successful self-managing teams are:

Different perspectives and cross-functional
skills are essential to an Agile Service
Management Team. Roles should include a:

Stable
Trusting
Empowered
Motivated
Accountable
Focused
Business-centric
Collaborative and communicative
Diverse and Inclusive
Empathetic
Quality driven

Agile Practice Owner
Agile Service Manager
Customer and/or process practitioner
Process architect
Tool administrator or software engineer
Change Manager
Scribe or Documenter

NOTE: The Agile Service Management Team
MUST include a customer or practitioner
representative.

Each member of the Agile Service Management
Team will work on items from the Practice
Backlog. None are observers.

The Team should have at least three members
but no more than nine to ensure sufficient skills
and the ability to self-organize. Members may
be on multiple teams, although it is
recommended that an individual not work on
more than two Agile Service Management
Teams at any given time.

Velocity

Velocity is a metric that estimates how much of
the Process Backlog an Agile Service
Management Team can handle in a single
Sprint.

Velocity is often measured by work
accomplished during past Sprints and serves as
a predictor of future Team performance.

It is important to be realistic when first
establishing the goals, the Increments, and
planning the Sprint Backlog for any specific
practice or microprocess. Unlike Scrum for
software engineering, members of an Agile
Service Management Team most likely have
other roles and responsibilities. The cadence of
work may ebb and flow according to
dependencies on other teams, tools, or
stakeholders. As Agile Service Management
practices mature, the velocity of each Agile
Service Management Team will naturally
increase as more microprocesses are built,
deployed, and integrated into the microprocess
architectures.

The Agile Practice Owner

The Agile Practice Owner is accountable for the
end-to-end results of the service management
practice. Their key responsibility is to create,
manage, prioritize and own the Practice
Backlog. The Practice Backlog is the single
source of current or future requirements
including activities, tools, plans, interfaces,
documentation, training, and improvements.

The Agile Practice Owner has ultimate authority
over the items in the Practice Backlog and
ensures that the items are clear and visible. This
role understands how to prioritize items in the
Practice Backlog and helps the Agile Service
Management Team understand the goals and
objectives of the next Increment. The Agile
Practice Owner is the only individual who can
change the Team’s direction and/or add, remove
or cancel items in a Sprint.

The primary responsibilities of the Agile
Practice Owner are:

Setting and communicating the practice’s
vision and practice goal
Ensuring the practice supports the needs of
stakeholders and the
creation of value
Staying informed about changes in business
direction and needs
Aligning the practice with other practices,
frameworks, and methods
Ensuring that Agile values and thinking are
embedded into the practice
Measuring and assessing the value, quality,
and relevance of the practice

Additional responsibilities include:

The Agile Practice Owner is not necessarily
responsible for performing any or all of the
tasks associated with managing a practice.
Depending on the size and complexity of the
organization, the Agile Practice Owner may
assign one or more roles to oversee day-to-day

and relevance of the practice

Prioritizing items in the Practice Backlog
Helps the Team to understand the goals and
objectives of the next Increment
Clarifying a Definition of Done for each
Increment or backlog item
Inspecting the progress and status after each
Sprint
Identifying opportunities to optimize
automation and reduce manual activities
Auditing and reviewing the practice on a
regular basis
Avoiding unnecessary layers of bureaucracy
and complexity
Working with other Practice Managers to own
and ensure that the Service Management
Architecture is aligned and efficient

assign one or more roles to oversee day-to-day
execution. An Agile Practice Owner may also be
accountable for one or more related practices.

The Agile Service Manager

In the early days of ITIL®, an individual who
possessed the most knowledge about service
management strategies and tactics was
designated as a Service Manager. The same
holds true for the Scrum Master in Agile
Software Development. Given the adoption of
multiple frameworks, tools, and methodologies,
the Agile Service Manager is tasked with
expertise on Scrum, Agile Service Management,
other service management frameworks, and
related practices. This individual is the subject
matter expert, coach, and protector of the Agile
Service Management Team.

Responsibilities of the Agile Service Manager
include:

Facilitating Agile Service Management events
Helping the Agile Practice Owner create and
maintain a “just enough” architecture of their
practice

The Agile Service Manager does not manage
the Agile Service Management Team. The Team
is self-managing. The Agile Service Manager is
a servant-leader that helps the Agile Practice
Owner create a “just enough” architecture of
Agile Service Management practices and
microprocesses by maintaining an accurate and
relevant Practice Backlog. The Agile Service
Manager coaches the Team, helps the members
write effective process-related user stories, and
encourages them to think small but act big.

practice
Helping the Team understand, adopt and
adapt Scrum and Agile Service Management
principles and methods
Ensuring that the Agile Service Management
Team focuses on outcomes over artifacts
Protecting the Team by removing
impediments whenever possible so that the
Agile Service Management Team is
successful
Instilling agile thinking, empirical principles,
Scrum knowledge, and ITSM objectives into
the Team’s culture and behaviors

The Agile Service Manager serves the Agile
Practice Owner by:

Most importantly, the Agile Service Manager
protects the Team and does everything possible
to ensure its success. This includes helping
those outside the Team understand how to (and
how not to) interact with the Team. The Agile
Service Manager educates the organization on
Agile values, Scrum practices, ITSM processes,
and the Agile Service Management approach to
process design and development so that
everyone knows what to expect.

The Agile Service Manager bridges a
relationship with developers, Scrum Masters,
DevOps teams, Site Reliability Engineers and

Helping ensure the practice is in alignment
with other practices and supports value
streams
Sharing techniques for effective Practice
Backlog management
Helping ensure the processes reflect Agile
values and principles
Facilitating stakeholder collaboration as
requested or needed

DevOps teams, Site Reliability Engineers and
automation architects to ensure cross-
pollination of taxonomy, tools and activities.
Collaboration across multiple domains helps to
create and maintain a unified Agile, DevOps and
ITSM/SRE culture.

Click here or press enter for the accessibility optimised version

CHAPTER EIGHT:
Agile Service
Management Artifacts

https://devops.turtl.co/?accessible

Scrum Artifact
Agile Service
Management Artifact

Product Backlog Practice Backlog

Increment Increment

Sprint Backlog Sprint Backlog

Burndown Chart Burndown Chart

The Practice Backlog

The Practice Backlog is a prioritized list of
everything that needs to be designed or
improved for a service management practice
including current and future requirements.

The Practice Backlog is the single source of
truth for a service management practice where
each item is expressed first as a user story. It
includes activities, tool updates, plans,
interfaces, documentation, training and
improvements. The Practice Backlog continually
evolves, is regularly re-prioritized and is never
complete. It exists as long as the service
management practice exists. It is solely owned

management practice exists. It is solely owned
and managed by the Agile Practice Owner.

The form and format of the Practice Backlog is
not prescribed – entries can be captured in
anything from a Kanban to a spreadsheet to a
service management tool. It should be visible to
all stakeholders and readily available for
inspection.

The Practice Backlog and User
Stories

An Agile Service Management user story is a
simple statement that describes what a user or
process practitioner wants from an aspect of
the service management practice. It is always
written from the user’s perspective and in their
words. It is not meant to include all of the
details about the aspect but is intended to
encourage further dialogue, detail and
collaboration. User stories are generally
captured on index cards or sticky notes
(physical or digital) but may point to more
comprehensive documents or diagrams. The
user story is generally written in business terms
and may evolve over time with collaboration.

Agile Service
Management
Artifacts

and may evolve over time with collaboration.

User stories generally follow the formula:

“As a (role), I want to (do something) so I
can (achieve something)

In 2003, Bill Wake recommended the INVEST
model to describe the elements of a good user
story

An Agile Service Management user story can be
written for any aspect of the practice or
microprocess including an activity, a procedure,
a complete microprocess or process artifact. A
process user story is the quickest and easiest
way to understand how the process,
microprocess or procedure will be consumed,

Independent
Negotiable
Valuable
Estimable
Small
Testable

microprocess or procedure will be consumed,
by whom and what the expected value outcome
is. User stories are very powerful tools that
provide a wealth of insight in a single sentence.
The Agile Practice Owner is responsible for
maintaining the Practice Backlog of user stories
and facilitating their refinement.

Epics

An Agile Service Management epic is a
collection of related user stories that may need
to be worked on across multiple sprints. Most
microprocesses would likely be considered an
“epic” to accommodate multiple requirements.

Practice Backlog Refinement

The Practice Backlog should be refined regularly
to add detail, estimates and prioritization to the
user stories or epics that comprise Practice
Backlog items. The Practice Goal is also
maintained in the Practice Backlog as a long-
term target for the service management
practice that the Agile Service Management
Team can use to help planning. This may also
be refined as business conditions change.

be refined as business conditions change.

The Agile Practice Owner and the Agile Service
Management Team will determine when and
how the backlog items should be reviewed and
refined. As items become higher priorities, the
amount of detail needed will become greater
and therefore refinement more necessary.
Details can come from a variety of sources, but
the Agile Service Management Team is
responsible for updating the work estimates as
important inputs into Sprint Planning.

Each user story or epic in the Practice Backlog
should be refined with at least the following
details:

A unique reference number for identification
and querying
The primary stakeholders or customers
An assigned priority
The estimated number of hours to complete
its design
Its dependencies and successors
Who the story has been assigned to?
The anticipated Sprint that will include this
story

It is important to retain the spirit of the Agile
Manifesto when entering or refining items in the
Practice Backlog. Keep the process as simple
as possible and be wary of prioritizing the
Practice Backlog items over the value of work
that the items will facilitate.

The Sprint Backlog

The Sprint Backlog is a subset of the Practice
Backlog and forecasts what increment of the
service management practice or microprocess
will be tackled during the next Sprint. It is
created during Sprint Planning and documents
all of the backlog items that will be necessary in
order to meet the Sprint Goal. It should be highly
visible and available for inspection.

The Sprint Backlog provides a central artifact
around which the Agile Service Management
Team can self-manage in order to meet the
Sprint Goal. It should have enough detail so that
the Team understands the Definition of Done
and can inspect progress during the Daily

story
An approximate date of completion

and can inspect progress during the Daily
Scrum.

The Sprint Backlog expires at the end of the
Sprint – hopefully with all items completed.
Outstanding items do not automatically carry
over to the next Sprint. They are reprioritized
with other Practice Backlog items and
considered during the next Sprint Planning.

Increments

An Increment is the potentially releasable
completed work that is the outcome of a Sprint.
It is one element of a service management
practice or microprocess. It may be an entire
microprocess or a discreet aspect of an epic or
service management practice. Increments are
considered potentially releasable if they can
deliver value. The increment could be an
enhancement, correction or an element of one
or more microprocesses. The Increment is built
upon user stories.

The Increment and its outcome is defined
during Sprint Planning from items in the Sprint
Backlog.

Backlog.

An Increment is considered finished when it
meets the agreed Definition of Done. It is
demonstrated and discussed during the Sprint
Review. The Agile Practice Owner then decides
whether and when the Increment should or can
be released. If the Increment is part of an epic,
then it will be reviewed in line with the progress
of that epic.

What’s the Difference Between an
Iteration and an Increment?

An increment is a potentially releasable piece of
a service management practice or microprocess
whereas an iteration is the repetition of building
increments and microprocesses in an Agile
Service Management way. Defining a process or
microprocess in increments allows it to be
designed gradually so that it is transparent,
adaptive and inspected (the pillars of Scrum).
Iterations are usually repeated as “sprints”. Each
iteration of Agile Service Management (e.g., the
sprints) enriches the practice either by adding
more value/ease of use or by removing manual
work or toil.

work or toil.

The “Definition of Done”

The Agile Service Management Team and
process stakeholders must share an
understanding of the “definition of done” for
each Practice Backlog item, Increment or
microprocess. A service management practice
is never “done”.

The Definition of Done is critical to Sprint
Planning in that it defines when the increment is
complete. It guides how many user stories can
be added to the Sprint Backlog and reasonably
accomplished during a Sprint. As the Agile
Service Management Team’s velocity increases,
their ability to get more “done” in each Sprint will
also increase.

When is an Increment Done?

The Definition of Done will vary from Increment
to Increment depending on the scope of work in
the Sprint Backlog. Microprocesses should only
be considered “done” when the following
questions have been answered:

questions have been answered:

Have the benefits and value been defined and
communicated? (Why)
Have roles and responsibilities been clarified?
(Who)
Have the inputs, outputs, triggers and
outcomes been defined? (What)

outcomes been defined? (What)
Are procedures easy to understand and do?
(How)
Have tools and automation been updated?
(Toil reduction)
Have policies been reviewed and updated if
necessary? (Consequences)
Have related Agile Service Management

In simple terms, the Definition of Done is when
the Team does not need to think about this
increment or microprocess anymore and the
completed increment should be potentially
shippable for release.

Other than the Practice Backlog (which is
owned by the Agile Practice Owner), all Agile
Service Management artifacts are owned by the
Team. The Agile Service Manager protects the
Agile Service Management Team, removes
impediments and provides expertise on service
management and Scrum but is not accountable
for managing the artifacts.

Have related Agile Service Management
Teams been informed? (Interoperability)
Have stakeholders been given a chance to
test? (Feedback)
Is it ready to stand on its own and deliver
value? (Go/NoGo)

Click here or press enter for the accessibility optimised version

CHAPTER NINE:
Agile Service
Management Events

https://devops.turtl.co/?accessible

Scrum Event
Agile Service
Management Event

Practice/Microprocess
Planning

Sprint Planning Sprint Planning

The Sprint The Sprint

Daily Scrum Process Standups

Sprint Review Sprint Review

Sprint Retrospective Sprint Retrospective

Open full table in browser:
https://devops.turtl.co/story/the-agile-service-

management-guide/page/13/1

Timeboxes

A Timebox is the maximum duration for each
event. The timebox range depends on the length
of the Sprint (usually less than one month).

Practice/Microprocess Planning

Deming’s Plan-Do-Check-Act model starts with
“Plan” for good reason – planning ensures that
the value and critical elements of a service
management practice or microprocess are
considered, discussed, resourced, and agreed

Event Timebox

Planning Event Not timeboxed

Sprint Planning Event 2 to 4 hours

The Sprint 2 to 4 weeks

Process Standups 15 minutes

Sprint Review 2 to 4 hours

Sprint Retrospective 1.5 to 3 hours

Open full table in browser:
https://devops.turtl.co/story/the-agile-service-

management-guide/page/13/1

Agile Service
Management
Events

https://devops.turtl.co/story/the-agile-service-management-guide/page/13/1
https://devops.turtl.co/story/the-agile-service-management-guide/page/13/1
https://devops.turtl.co/story/the-agile-service-management-guide/page/13/1
https://devops.turtl.co/story/the-agile-service-management-guide/page/13/1

considered, discussed, resourced, and agreed
upon. Planning events fall into two primary
categories: Practice Planning and Microprocess
Planning. Regardless, planning events are not
optional in Agile Service Management and are
essential to ensuring that “minimum viable or
“just enough” are always in the spirit of the plan.
One of the most important outcomes of any
planning event is the metrics that will be used to
measure the progress or value of a practice or
microprocess.

Practice Planning

Service management practices (e.g., IT Change
Management) must be planned in order to
understand and create the underlying
microprocess architecture. This is particularly
important in order to understand and map the
order in which each microprocess will be
designed and the relationships between the
microprocesses both within and outside the
same service management practice. Practice or
microprocess planning should stay focused on
high-level strategic aspects and would likely
span multiple events. The result should be one
or more Strategic Sprints. Attendees at

or more Strategic Sprints. Attendees at
Practice/Microprocess Planning events would
likely be more managerial than practitioner and
must include business stakeholders and IT

must include business stakeholders and IT
management since areas such as service levels,
resource allocation, business value, timelines,
and financing would likely be discussed.

and financing would likely be discussed.

Some of the areas to address during Practice/
Microprocess Planning include:

The output of an early Practice Planning event
should be a Practice Definition Document for
the specific service management practice. It
should be concise, easy to understand, and

The business value and benefit of the practice
Goals, objectives, inputs, and outputs of the
processes or microprocesses
The microprocess architecture
Prioritization of microprocess design
Expected integration and dependencies with
other practices and microprocesses
Stakeholders
Automation opportunities (existing and
potential)
Regulatory, governance, or policy
requirements
Major risks
The “minimum viable” or “just enough” level to
meet goals
Definition of Done
Metrics

should be concise, easy to understand, and
include a preliminary map of the microprocess
architecture for that service management
practice.

Microprocess Planning

The primary goal of Microprocess Planning
would be to answer this question:

“What is the least amount of effort available for
this microprocess to deliver value to our
organization and our service management
practices?”

Microprocess planning is likely faster and less
complex than practice planning since the focus
is on a single well-defined activity.
Microprocesses are small, easier to understand,
visualize and therefore may be easier to identify
a “minimum viable” plan for that activity.

Some other areas to be planned for a single
microprocess would include:

What are we trying to achieve and why?
(Value)

One of the risks of a microservice architecture
is that each microprocess becomes more
complex or cumbersome than necessary.
Remember, the goal is to define a “just enough”
state for any service management practice built
upon an architecture of agile microprocesses
that contribute to the overall speed and quality
of the practice and services. If each
microprocess is not easy to execute, the entire
service management practice will become
unwieldy and bureaucratic.

Microprocess planning should not be done in
isolation with the Agile Service Management
Team. Good planning requires the Agile Service

(Value)
Roles and responsibilities
Timelines
Relationship and dependencies with other
microprocesses and service management
practices
Constraints
Policies and consequences
Major risks
Communication
Metrics

Team. Good planning requires the Agile Service
Management Team to actively solicit input,
ideas, and feedback from those that will execute
the microprocess under a variety of
circumstances. Whereas Practice Planning
usually engages management, microprocess
planning should include IT and business
practitioners. They are the best resources for
identifying “minimum viable” or “just enough”,
particularly when they are invited to be part of
the solution. The same stakeholders should be
invited to Sprint Reviews for microprocess
development.

Planning events are not timeboxed but should

Planning events are not timeboxed but should
take on the same Agile Service Management
spirit of “just enough”.

Sprint Planning

Sprint Planning is timeboxed for 2 to 4 hours
which demonstrates the importance of proper
Sprint Planning. The Agile Service Manager
facilitates the event and the Agile Practice
Owner describes the next Increment or
microprocess to be completed. The entire Agile
Service Management Team collaborates on
planning the details of the next Sprint.

The primary purpose of Sprint Planning is to:

Establish the Sprint Goal
Define what increment of the Practice
Backlog will be completed during the Sprint
Determine how the increment will be done
Ensure that the Agile Service Management
Team has all of the necessary skills and
resources for this Sprint
Consider any automation opportunities or
requirements
Define any dependencies or integrations with

Inputs to Sprint Planning include the Practice
Backlog, the past velocity of the Agile Service
Management Team, the availability of team
members and the dependencies on other
processes and tools. Only the Team can
determine how much it can accomplish during
the next Sprint.

Sprint Planning is also where the Team begins
to self-manage by determining how they will
accomplish the Sprint Goal. They plan their
approach and prioritize the items going into the
Sprint Backlog. By the end of Sprint Planning,
the Team should be able to articulate what they
are going to accomplish and how they are going
to do it.

The Sprint

A Sprint is a fixed period of less than 4 weeks
during which the work needed to meet the Sprint

Define any dependencies or integrations with
other microprocesses or practices
Clarify the Definition of Done for each backlog
item and the Sprint itself
Create a Sprint Backlog

during which the work needed to meet the Sprint
Goal is performed. Other events including Sprint
Planning, Process Standups, Sprint Review and
Sprint Retrospective all happen within the
Sprint.

The Team builds an increment from the Sprint
Backlog items that were agreed to during Sprint
Planning. The Sprint is guided by the Sprint Goal
and the Definition of Done.

During the Sprint, the Agile Service Manager
keeps the Team focused, coaches the members
and stakeholders on Scrum and service
management practices and protects the Team
from outside distractions. The Agile Service
Manager also removes impediments whenever
possible. The Agile Practice Owner ensures that
no one else attempts to change the Team’s
priorities or tasks during the Sprint.

No changes can be made to the Increment
during the Sprint that would endanger the Sprint
Goal. Progress is inspected during the Process
Standups. The Agile Practice Manager can
clarify any questions about the scope of the
Sprint.

Sprint.

Agile Service Management embraces the Scrum
principle of being iterative and incremental.
Every Sprint is considered an iteration that
progresses the service management practice
forward in an incremental way. When one
iteration is completed, another is planned and
repeated until all increments of the practice or
microprocess are done.

Sprint Types

Springs can be used for many different aspects
of engineering processes including:

To ensure that all aspects of the practice or
microprocess are considered, Agile Service

Designing microprocesses and components
Identify requirements
Communication and Training
Benchmark current performance
Documentation
Tools and Automation
Assess performance and continually improve
Implementation

microprocess are considered, Agile Service
Management defines three basic types of
Sprints.

Sprint Type 1: Strategic Sprint

A Strategic Sprint is a timebox committed to
working on the critical high-level items in the
Practice Backlog. These are usually the output
of Practice Planning. These items do not usually
appear on flowcharts, architectures, value
stream maps or other artifacts. Yet they are
essential for the service management practice
and its microprocesses to be effective, efficient
and sustainable.

Items accomplished during Strategic Sprints
can include:

Creating a concise Practice Definition
Document to establish measurable goals and
objectives for the service management
practice
Planning and allocating resources (human,
technical and financial)
Inventorying and assessing existing tools
Creating new or updating existing policies

Strategic Sprints follow the rules of any other
type of Sprint. They are guided by a Sprint Goal,
agreed Definition(s) of Done and produce an
Increment that is demonstrated during a Sprint
Review.

Strategic Sprint iterations are not necessarily
sequential. Strategic Sprints can be planned
when they make sense to do so but always after
the first Practice Planning event. Planning
integrated Strategic Sprints for related practices
or microprocesses may help to ensure
alignment and integration.

Sprint Type 2: Increment Sprint

An Increment Sprint is planned in order to
complete an Increment that could be a whole
microprocess, a piece of a microprocess or epic
or an improvement or correction to a practice or

Creating new or updating existing policies
Conceiving the microprocess architecture or
defining relationships and dependencies
Identifying and mapping stakeholders and
practitioners
Drafting communication plans

or an improvement or correction to a practice or
microprocess based on Practice Backlog user
stories.

The Increment to be completed during an
Increment Sprint should be identifiable, logical
and be considered potentially shippable
depending on its nature. It should not be a
random collection of Practice Backlog items
that are not interrelated. There should be a clear
Definition of Done and Sprint Goal for an
Increment Sprint.

Sprint Type 3: Continual Service
Improvement (CSI) Sprint

A CSI Sprint commits a cycle of work to
implementing prioritized improvements from
the Practice Backlog for a service management
practice or a microprocess.

A CSI Sprint is usually undertaken as part of
Agile Process Improvement. It is an opportunity
to adapt the input and feedback from prior
sprints, stakeholders, practitioners and
customers. A CSI Sprint is a good opportunity to
level the service management practice or

level the service management practice or
microprocess to a “just enough” level. Sprint
Planning for a CSI Sprint is particularly
important in order to discuss, resource and
prioritize improvements.

CSI Sprints should be regularly planned
throughout the lifecycle of the practice or
microprocess to maintain or increase agility and
to ensure that services are being managed
according to speed and quality expectations of
the end consumer.

One caution: Change fatigue can occur when
too many changes are made to a practice or
microprocess in rapid succession. The risk is
particularly strong after a new microprocess or
practice is introduced or re-engineered. It is
extremely important to allow time for people to

extremely important to allow time for people to
adapt to a new way of working with ample time
for feedback and ideas. While there will likely be
no shortage of comments or suggestions about
a newly implemented process, it is important to
collect and analyze all input and feedback to
recognize patterns and anti-patterns.

Defining different types of Sprints is offered
solely for the purpose of ensuring that all
aspects of the service management are
addressed. There is no limit to the number or
frequency of each type of Sprint or the order in
which they are done. There may also be other
Sprint cycles that do not fall into a particular
type and are just iterations to progress the
service management practice forward.

Process Standups

The Process Standup is timeboxed for 15
minutes during an active Agile Service
Management sprint. It is not a status meeting
but a frequent opportunity to inspect progress
towards the Sprint Goal and identify
impediments as quickly as possible. The term
“Standup” demonstrates that the event is

“Standup” demonstrates that the event is
intended to be short and not necessarily seated.

Because the Team is not necessarily working on
the Agile Service Management sprint full-time,
the timing of Process Standups may not be daily
but should at least be held weekly.

During the Process Standup, each Team
member in turn shares:

While observers and stakeholders may attend,
Team members are the only ones allowed to
speak. Questions are not allowed during the
timebox. The Agile Service Manager facilitates
the event.

The importance of a Process Standup should
not be undervalued – the faster deviations and
impediments are identified, the greater the
opportunity to meet the Sprint Goal and get

What they have accomplished since the last
standup
What they are going to do before the next
standup
What obstacles are in his/her way

opportunity to meet the Sprint Goal and get
more done. Fifteen minutes during an active
Sprint is usually time well spent.

The Sprint Review

The Sprint Review is timeboxed for 2-4 hours
and is attended by the Team and stakeholders
or customers. It is an important opportunity for
transparency, inspection and adaptation (the
pillars of Scrum). It is facilitated by the Agile
Service Manager.

During the Sprint Review, the Team
demonstrates the aspects of the practice or
microprocess that were engineered during the
last Sprint. The Team shares the challenges
they faced, successful resolutions and
outstanding issues. The Agile Practice Owner
explains the current state of the practice or
microprocess and the Practice Backlog. The
Agile Practice Owner also describes any
feedback received from practitioners about any
previously released Increments. A decision on
whether the current Increment will be released
is made.

The Sprint Review allows the Team and
stakeholders to discuss the next steps for the
microprocess or practice as input to the next
Sprint Planning.

Should An Increment or
Microprocess be Released?

One of the key decisions made during the Sprint
Review is whether or not to release the

Review is whether or not to release the
Increment. While releasing aspects of service
management processes incrementally gives the
organization time to adopt and adapt to new
behaviors, there are several considerations that

behaviors, there are several considerations that
should be discussed including whether

The increment stands alone on its own merit or
enhances or improves another increment:

Some of the benefits of releasing an Increment
include:

The organization is ready and receptive
It won’t confuse practitioners
It does not add extra toil while waiting for
automation
It delivers business value
There is no risk to its dependencies and
related practices or microprocesses
Metrics have been adjusted if needed
The Increment will not affect the accuracy or
validity of data or reporting
It does not contribute to “change fatigue”

Changing organizational behaviors one
increment at a time (maybe making ITSM
easier)
Capturing more data or information
Shortening feedback loops and using
feedback to influence future Increments

Sprint Retrospective

The Sprint Retrospective is an internal
opportunity for the Team to reflect on and
inspect the progress and organization of the
last Sprint. In some ways, it resembles the form
and format of a blameless post-mortem review
in that it addresses:

feedback to influence future Increments
Helping the practice adapt to changing
requirements as it is slowly being matured
Identifying and aligning dependencies on
other processes
Encouraging an integrated approach to
service management
Keeping tools relevant and updated
Finding the right level of “just enough” ITSM

What did we do right?
What could we have done better?
What have we learned?
What will we do differently next time?
In the spirit of continual improvement, the
Team also discusses
Team composition and skill sets
Tools

The Sprint Retrospective is timeboxed for 1.5 to
3 hours and is facilitated by the Agile Service
Manager. While the temptation may be to go
from the Sprint Review directly into the next
Sprint Planning, it is important for the Team to
take the time to review and discuss their past
performance. Incremental improvements will
absolutely increase the Team’s maturity and
velocity.

Sprint retrospectives have to be inclusive and
blameless. Everyone’s input and feedback is
important so long as it is constructive and well-
intentioned.

Tools
Logistics
The Definition of Done
Internal and external communications
Input and feedback from stakeholders
Velocity

Click here or press enter for the accessibility optimised version

CHAPTER TEN:
Agile Process
Improvement

https://devops.turtl.co/?accessible

Since Agile Service Management is loosely
based on Scrum and its basis in empirical
thinking, Agile Process Improvement aligns with
Scrum’s three pillars of Transparency,
Inspection, and Adaptation.

Agile Process Improvement’s goal is to ensure
that service management practices and
microprocesses are not:

Remember, Agile Service Management
practices and processes are purely theoretical
until someone actually performs the tasks. It is
therefore extremely important to plan a review
cycle while keeping an open line of
communication with practitioners. Those that
are actually doing the work and are measured
for their personal success are the best
surveyors of how the practice or microprocess

Bureaucratic
Unclear
Constrained
Time-consuming
Irrelevant
Circumvented
Nice on paper, but…

surveyors of how the practice or microprocess
is delivering value in the form of quality IT
services.

Agile Process Improvement can be applied to
any service management practice or
microprocess regardless of the frameworks or
methods used.

Agile Process Improvement Reviews

Agile Practice Owners should plan regular
surveillance reviews of their service
management practices and microprocesses.
The Agile Service Manager would facilitate the
review and provide guidance on Agile, ITSM, and
Agile Service Management best practices.

The review is an important opportunity to
connect again with stakeholders, practitioners,
and the Agile Service Management Team. In
some cases, a formal audit demonstrating
control or for ISO/IEC certification purposes
may be necessary but Agile Process
Improvement no longer addresses the topic of
formal ITSM audits.

Agile Service
Improvement
Not surprisingly, engineering agility
into a service management
practice the first time around is
easier than maintaining a “just
enough” structure in the long term.
If left unchecked, microprocesses
can become complex and
bureaucratic over time. There is
also a risk that people will revert to
old ways and potentially there will
be “not enough” or too many
variations on the microprocess
architecture to meet the
organization’s goals. The leap from
“just enough” to “too much”
process can seem to happen
almost overnight. The drift can
result in confusion, more toil,
delays, and lower quality services.

The Goals of Agile Process
Improvement

Agile thinking encourages us to value customer
interactions over processes and tools. Agile
Process Improvement embraces that spirit by
ensuring that the voice of the customer is
instilled into improvement efforts. Focus
groups, surveys, and face-to-face discussions
are the best way to draw out suggestions,
challenges, and insight. It is also a great way to
clearly identify waste and the manual, repetitive
work known as toil.

Identify and eliminate waste and bottlenecks
Detect practice or microprocess drift
Benchmark against Agile values and
principles
Scale up or back to “just enough” structure
and control
Ensure alignment with other microprocesses
and practices
Confirm ongoing relevance and value creation
Ensure ease of use
Solicit input and feedback from practitioners
and stakeholders
Improve effectiveness, efficiency, and agility

work known as toil.

Be sure to include a cross-section of business
and IT managers, practitioners, and suppliers
who regularly engage with the practice or
microprocess.

Sample questions include:

Conducting a 360-degree surveillance will help
the Agile Practice Owner understand how to

Is this practice or microprocess simple to
understand and apply? If so, how? If not, why?
Is it timely?
How does it help (or hinder) your job
performance?
How does it enable the management and
quality of services?
Is it relevant to the current business
environment?
How does it work with other practices or
microprocesses?
Are there any manual tasks that you think we
can or should automate?
How can we improve the flow, value or ease
of use of this practice or microprocess?

the Agile Practice Owner understand how to
keep or improve the value of the process in the
management of IT services. The Agile Service
Manager would facilitate the reviews and assist
the Agile Practice Owner in collecting and
evaluating the output in line with Agile values
and principles and ITSM guidance.

The improvement suggestions collected as part
of the Agile Process Improvement review should
take the form of User Stories and be added to
the Practice Backlog for prioritization and
potential inclusion in upcoming CSI Sprints.

One of the key advantages of Agile Service
Management is that the microprocess
architecture makes conducting reviews easier
and more accessible than in traditional end to
end ITSM processes.

Thinking of microprocess reviews as more of a
check-in than an audit helps the Agile Practice
Owner develop a reasonable and achievable
review cycle, particularly when there are a
greater number of microprocesses in use.

There are certain events or situations that would
be appropriate for an Agile Process
Improvement review:

Sustaining Improvements

It is important to take a holistic approach when
making improvements sustainable. Start by
baselining “as is” performance so that
performance changes can be monitored.

Feedback should be solicited when new
microprocesses are released or changes to
existing microprocesses are made. Actively
listen to and act on complaints and
suggestions. Communicate successes, failures
and lessons learned both within the Team and

About a month or two after a microprocess
release
Quarterly for microprocesses, annually for
service management practices
When a related microprocess is released
When automation is being considered or
introduced for one or more tasks
When a formal audit is required
Whenever it is beneficial to do so

and lessons learned both within the Team and
to stakeholders.

Clear roles and responsibilities and tools that
match new or existing rules are essential.

Other ways to sustain Agile Process
improvements include:

Agile Process Improvement is an essential
element of continuous service improvement and
scaling for ITSM. A service management
practice could be effective (gets the job done),
efficient (least amount of effort) but not
necessarily agile (flexible, adaptable, plays well
with others). Agile Process Improvement
ensures that each of these are reviewed against

Continue allocating resources to continual
improvement
Hire, promote and develop employees and
managers who support the vision
Provide ongoing training to existing
employees
Conduct regular reviews and audits
Innovate – take calculated risks
Claim and promote the wins

ensures that each of these are reviewed against
all three criteria to maintain a “just enough”
level.

Click here or press enter for the accessibility optimised version

CHAPTER ELEVEN:
Automation and Agile
Service Management

https://devops.turtl.co/?accessible

Agile Service Management invites automation
into the Agile Service Management Team to
help instill an engineering mentality when
defining and designing practices and
microprocesses. Automation expedites the
identification of “just enough” structure and
control, particularly when the automation
produces the results without the human effort.
Automation not only facilitates Agile Service
Management’s alignment with other practices
such as Continuous Delivery, DevOps and Site
Reliability Engineering, the use of consistent and
automated controls may also help demonstrate
governance, risk management and compliance.

Automation also supports:

Intelligent automation requires intelligent
microprocesses. The Agile Service Manager

More frequent releases
Fewer errors
Higher quality IT services
Improved security and risk mitigation
Faster recovery from incidents
Increased business and customer
satisfaction

microprocesses. The Agile Service Manager
should assess tools and automation across the
entire organization to identify ways to optimize
and integrate existing tools. Avoiding replication
of effort and engaging others in dialogue about
similar goals and mutual enablement also
supports cultural transformation.

Most of the ITSM tools have also recognized the
need to be more agile and have introduced
integrations, enhancements or new features
that make the work of IT easier and faster. The
rise of artificial intelligence and machine
learning are helping these efforts.

Some automation opportunities to consider:

ITSM suites (some of which have Agile
modules)
Automated builds, testing, staging and
deployment
Monitoring, observability and event
management
Dashboards
Metrics and analytics
Cloud native applications and cloud
infrastructure

Automation and
Agile Service
Management
Automation reduces toil by
consistently performing repetitive
tasks that allows humans to do
more productive, innovative and
satisfying work such as weighing
evidence, solving problems,
making decisions and using their
skills, judgment and experiences.

Rely on the knowledge and experience of those
that do a job when assessing tool selection. Be
careful to avoid discussions that turn into a
“favorite tech” talk. This can lead to
implementing multiple tools that do the same
thing because of personal preferences. While
people will typically be more productive with
tools they know, the automation landscape is
constantly changing so it is unrealistic to expect
that the tools in use today will be the same tools
in use for years to come.

Despite all of the above, it is important to note
that technology alone will not instill agility into
an organization particularly as it relates to
service management. As the Agile Manifesto
reminds us, we should not prize the artifacts
(tools) over the outcomes (higher quality
services).

infrastructure
Flowcharts and drawing
Kanban tools
Value Stream Management tools
Product Management to track user stories
and the Product/Practice Backlog

Click here or press enter for the accessibility optimised version

CHAPTER TWELVE:
Getting Started

https://devops.turtl.co/?accessible

Value Stream Management

The starting point of any Agile, DevOps, or
service management initiative should be the
mapping, negotiation, and agreement of the
organization’s value streams. This increases
everyone’s awareness of how value is delivered
to customers in the form of services. Not only
does Value Stream Management increase flow
by helping to eliminate waste, delays, or
bottlenecks, it is an excellent engagement tool
for overcoming some of the cultural constraints
that have plagued development, operations,
security, ITSM, and the business. Aligning Value
Stream Management with service management
is a solid recipe for success and can instill a
common mindset, common processes,
common vocabulary, and a common
understanding of what value means to the end
customer.

How Many Service Management
Practices and Microprocesses Are
Needed?

This is a tricky question – and of course, the
obvious answer is “it depends”. Version 2 of

obvious answer is “it depends”. Version 2 of
ITIL® described 11 processes that grew to 26 in
version 3 and 34 in ITIL® 4. The Site Reliability
Engineering books describe XXX of key
practices. Does an enterprise have to implement
all? Of course not. Most enterprise IT service
management programs focus on 10-15 core
practices that have the highest impact on the
quality of service. Please avoid process for
process’ sake.

In my opinion, essential service management
practices include

Service Level Management
IT Change Management
Release Management
Configuration Management
Incident Management
Problem/Root Cause Management
Event Management/Monitoring
Request Management
Capacity and Performance Management
Knowledge Management
Information Security Management
Business Continuity Management

Getting Started
Agility does not happen overnight.
Regardless of which Agile, DevOps,
SRE, or ITSM frameworks that an
organization adopts, moving from
a traditional ITSM approach to an
Agile Service Management
approach is a journey that takes
practice and perseverance.
Humans require time to absorb
change, normalize and excel at
new ways of working. It is
therefore essential that the Scrum
values of Commitment, Focus,
Respect, Openness, and Courage
are embraced and demonstrated in
Agile Service Management
environments.

Start simple and stay simple. Pick one service
and one service management practice. Identify
an Agile Practice Owner, Agile Service Manager,
the Agile Service Management Team,
stakeholders, and practitioners. Capture user
stories into a Practice Backlog. Plan your
Sprints. Experiment and learn. Measure
constantly. Engage with your customer
community and encourage feedback.
Continually look for ways to reduce toil through
engineering. Create a cycle of review and
refinement. Avoid bureaucracy and change
fatigue.

Don’t rush. Start with a Minimum Viable
Process and move forward from there.
Introduce the new or improved practice in small,
frequent increments. Give the organization time
to absorb, adopt and adapt to new behaviors.
Mature the processes holistically and
organically. Small, short-term wins will deliver
greater wins in the long term.

Most importantly, remember –
regardless of what service
management framework you adopt
or customize, it is always more
important to “be agile” than “do
Agile.”

Click here or press enter for the accessibility optimised version

APPENDIX:
Agile Service
Management
Taxonomy

https://devops.turtl.co/?accessible

TERM DEFINITION

A
Agile

A project management method for complex projects that divides tasks into small “sprints” of work with frequent
reassessment and adaptation of plans.

Agile Manifesto
A formal proclamation of four key values and 12 principles to guide an iterative and people-centric approach to software
development.

Agile Process Engineering
The aspect of Agile Service Management (Agile SM) that applies the same Agile approach to process design as
developers do to software development.

Agile Process Improvement The aspect of Agile SM that aligns Agile values with ITSM processes through continuous improvement.

Agile Service Management
(Agile SM)

Agile Service Management (Agile SM) ensures that IT service management processes reflect agile values and are
designed with “just enough” control and structure to enable the delivery of services that enable the ability to do
something when and how they are needed or desired.

Open full table in browser:
https://devops.turtl.co/story/the-agile-service-management-guide/page/17/1

Agile Service Management Taxonomy

https://devops.turtl.co/story/the-agile-service-management-guide/page/17/1
https://devops.turtl.co/story/the-agile-service-management-guide/page/17/1

TERM DEFINITION

Agile Service Management
Team

A team of at least 3 people (including a customer or practitioner) that is accountable for a single microprocess or a
complete service management practice.

Agile Service Manager
An Agile Service Management subject matter expert who is the coach and protector of the Agile Service Management
Team.

C
Continuous Delivery A software development practice where software is always in a releasable state.

D
Definition of Done A shared understanding of what it means for work to be complete.

Devops
A cultural and professional movement that stresses communication, collaboration and integration between software
developers and IT operations professionals.

Open full table in browser:
https://devops.turtl.co/story/the-agile-service-management-guide/page/17/2

https://devops.turtl.co/story/the-agile-service-management-guide/page/17/2
https://devops.turtl.co/story/the-agile-service-management-guide/page/17/2

TERM DEFINITION

I
Increment Potentially shippable completed work that is the outcome of a Sprint.

ITIL®
Set of best practice publications for IT service management. Published in five core books representing the five
stages of the IT service lifecycle: Service Strategy, Service Design, Service Transition, Service Operation and
Continual Service Improvement.

INVEST A mnemonic was created by Bill Wake as a reminder of the characteristics of a quality user story

K
Kanban A method for visualizing and communicating workflow in order to reduce or eliminate work in progress.

L
Lean Thinking

The goal of lean thinking is to create more value for customers with fewer resources and less waste. Waste is
considered any activity that does not add value to the process.Open full table in browser:

https://devops.turtl.co/story/the-agile-service-management-guide/page/17/3

https://devops.turtl.co/story/the-agile-service-management-guide/page/17/3
https://devops.turtl.co/story/the-agile-service-management-guide/page/17/3

TERM DEFINITION

M

Microprocess
A distinct activity that can be defined, designed, implemented and managed independently and is generally associated
with a primary service management practice. A microprocess may be integrated with other service management
practices.

Microprocess Architecture
A collection of integrated microprocesses that collectively perform all of the activities necessary for an end-to-end
service management practice to be successful.

Minimum Viable Product
The most minimal version of a product that can be released and still provide enough value that people are willing to
use it.

P
Plan-Do-Check-Act

A four-stage cycle for process management and improvement attributed to W. Edwards Deming. Sometimes called the
Deming Cycle or PDCA.

Practice Backlog
A prioritized list of everything that needs to be designed or improved for a process including current and future
requirements.

Practice Owner Role accountable for the overall quality of a service management practice and owner of the Practice Backlog.
Open full table in browser:

https://devops.turtl.co/story/the-agile-service-management-guide/page/17/4

https://devops.turtl.co/story/the-agile-service-management-guide/page/17/4
https://devops.turtl.co/story/the-agile-service-management-guide/page/17/4

TERM DEFINITION

Practice/Microprocess
Planning Meeting

A high-level event to define the goals, objectives, inputs, outcomes, activities, stakeholders, tools and other aspects of
a process. This meeting is not timeboxed.

Process Interrelated work activities that take specific inputs and produce specific outputs that are of value to a customer.

Process Customer A recipient of a process’ output.

Process Standups A daily timeboxed event of 15 minutes or less for the Team to re-plan the next day of work during a Sprint.

Product Backlog Refinement
An ongoing process of adding detail, estimates and order to backlog items. Sometimes referred to as Product Backlog
grooming.

Product Owner An individual who manages the Product Backlog and ensures the value of the work that the Team performs.

R
Release Planning Meeting

A non-timeboxed event that establishes the goals, risks, features, functionality, delivery date and cost of a release. It
also includes prioritizing the Product Backlog.

Open full table in browser:
https://devops.turtl.co/story/the-agile-service-management-guide/page/17/5

https://devops.turtl.co/story/the-agile-service-management-guide/page/17/5
https://devops.turtl.co/story/the-agile-service-management-guide/page/17/5

TERM DEFINITION

S

Scrum
A simple framework for effective team collaboration on complex projects. Scrum provides a small set of rules that
create “just enough” structure for teams to be able to focus their innovation on solving what might otherwise be an
insurmountable challenge.

Scrum Components Scrum’s roles, events, artifacts and the rules that bind them together.

Scrum Guide The definition of Scrum concepts and practices, written by Ken Schwaber and Jeff Sutherland.

ScrumMaster An individual who ensures that the Team adheres to Scrum practices, values and rules.

Scrum Team A self-organizing team consisting of a Product Owner, Development Team and ScrumMaster.

Scrum Values
A set of fundamental values and qualities underpinning the Scrum framework:; commitment, focus, openness, respect
and courage.

Self-organizing
The management principle that teams autonomously organize their work. Self-organization happens within boundaries
and against given goals. Teams choose how best to accomplish their work, rather than being directed by others
outside the team.

Open full table in browser:
https://devops.turtl.co/story/the-agile-service-management-guide/page/17/6

https://devops.turtl.co/story/the-agile-service-management-guide/page/17/6
https://devops.turtl.co/story/the-agile-service-management-guide/page/17/6

TERM DEFINITION

Service Management
Practice

A complete end to end capability for managing a specific aspect of service delivery (e.g., changes, incidents, service
levels).

Sprint A period of 2-4 weeks during which an increment of product work is completed.

Sprint Backlog Defines the work that must be completed during the Sprint.

Sprint Goal The purpose and objective of a Sprint, often expressed as a business problem that is going to be solved.

Sprint Planning Meeting
A 4-8 hour timeboxed event that defines the Sprint Goal, the increment of the Product Backlog that will be done during
the Sprint and how it will be done.

Sprint Retrospective
A 1.5-3 hour timeboxed event during which the Team reviews the last Sprint and identifies and prioritizes improvements
for the next Sprint.

Sprint Review
A timeboxed event of 4 hours or less where the Team and stakeholders inspect the work resulting from the Sprint and
update the Product Backlog.

Strategic Sprint
A 2-4 week timeboxed Sprint during which strategic elements that were defined during the Process Planning Meeting
are completed so that the Team can move on to designing the activities of the process.

Open full table in browser:
https://devops.turtl.co/story/the-agile-service-management-guide/page/17/7

https://devops.turtl.co/story/the-agile-service-management-guide/page/17/7
https://devops.turtl.co/story/the-agile-service-management-guide/page/17/7

TERM DEFINITION

T
Timebox The maximum duration of an event.

U
User Story

A statement written from the user’s business perspective that describes how the user will achieve a goal from a feature
of the product. User stories are captured in the Product Backlog.

V
Velocity How much Product Backlog effort a team can handle in a single Sprint.Open full table in browser:

https://devops.turtl.co/story/the-agile-service-management-guide/page/17/8

https://devops.turtl.co/story/the-agile-service-management-guide/page/17/8
https://devops.turtl.co/story/the-agile-service-management-guide/page/17/8

TERM DEFINITION

W
Waste Any activity which does not add value to a process.

Waterfall A linear and sequential approach to software development.
Open full table in browser:

https://devops.turtl.co/story/the-agile-service-management-guide/page/17/9

https://devops.turtl.co/story/the-agile-service-management-guide/page/17/9
https://devops.turtl.co/story/the-agile-service-management-guide/page/17/9

Click here or press enter for the accessibility optimised version

About the Author
Jayne Groll, CEO of DevOps Institute

https://devops.turtl.co/?accessible

About the Author

Jayne Groll is co-founder and CEO of the DevOps Institute whose mission is to advance the Humans of DevOps.
Jayne was also one of the founding partners in ITSM Academy, spending over 15 years educating and speaking on
IT Service Management, ITIL®, ISO 20000, and process design.

Jayne has had an extensive IT Operations career starting with implementing and managing Service Desks to
leading IT organizations across multiple verticals. She achieved her ITIL® V2 Service Manager certification (with
distinction) in 2005 and later her ITIL® V3 Expert. She is also a certified ScrumMaster.

Jayne is a recognized thought leader, author, and speaker in the ITSM, DevOps, and SRE communities.

Jayne Groll

About DevOps Institute
DevOps Institute is a global learning community that helps you develop both the technical and personal
expertise to make the most of DevOps in both your business and your career. Focused exclusively on all
things DevOps, including SRE, DevSecOps, and whatever’s next, we support professionals at all levels in
bringing greater human connection to the world of IT. Providing deep practical knowledge, a welcoming
professional network, cutting-edge research, respected certification programs, and unique insider events, our
goal is to give you the confidence and know-how to transform your team, your organization, your career, and
beyond. Visit www.devopsinstitute.com/ to learn more.

Want More From DevOps Institute?

Continue the conversation--join the community to engage in discussion groups and access exclusive
content
Upskill today–become a Certified Agile Service Manager
Attend learning events
Advance your Skills, Knowledge, Ideas and Learning with our library of SKILbooks

http://devopsinstitute.com/
https://www.devopsinstitute.com/membership/
https://www.devopsinstitute.com/certifications/certified-agile-service-manager
https://www.devopsinstitute.com/events
https://www.devopsinstitute.com/skilbooks

Click here or press enter for the accessibility optimised version

Thank you for reading

The Agile Service
Management Guide
Copyright © 2021 by DevOps Institute. All rights reserved.

Cookies [1] [2] Terms [1] [2] Privacy [1] [2] P O W E R E D B Y

https://devops.turtl.co/?accessible
https://devops.turtl.co/about/cookies
https://www.devopsinstitute.com/privacy-policy/
https://turtl.co/about/legal/terms-conditions
https://www.devopsinstitute.com/privacy-policy/
https://turtl.co/about/legal/privacy
https://www.devopsinstitute.com/privacy-policy/
https://turtl.co/?utm_source=devops&utm_medium=The%20Agile%20Service%20Management%20Guide&utm_campaign=poweredbyturtl

	The Agile Service Management GuideRead on
	By Jayne Groll, DevOps Institutewith Foreword from Denis EsslingerRead on
	
	
	
	
	

	Agile Service Management Guide

	FOREWORDRead on
	Denis EsslingerITSM and DevOps EvangelistRead on
	FOREWORD

	TABLE OF CONTENTSRead on
	Table of Contents
	

	INTRODUCTIONRead on
	INTRODUCTION

	CHAPTER ONE:Being AgileRead on
	Being Agile
	ag·ile

	CHAPTER TWO:What is Agile Service Management?Read on
	What is Agile Service Management?

	CHAPTER THREE:Agile Service Management and Other Frameworks / PracticesRead on
	Agile Service Management and Other Frameworks / Practices
	Agile Software Development
	Lean Practices
	IT Service Management Frameworks

	CHAPTER FOUR:Scrum BasicsRead on
	Scrum Basics

	CHAPTER FIVE:Agile Process EngineeringRead on
	Agile Process Engineering

	CHAPTER SIX:An Agile Approach to Process EngineeringRead on
	Waterfall vs Agile Process Engineering

	CHAPTER SEVEN:Agile Service Management RolesRead on
	Agile Service Management Roles

	CHAPTER EIGHT:Agile Service Management ArtifactsRead on
	Agile Service Management Artifacts

	CHAPTER NINE:Agile Service Management EventsRead on
	Agile Service Management Events

	CHAPTER TEN:Agile Process ImprovementRead on
	Agile Service Improvement

	CHAPTER ELEVEN:Automation and Agile Service ManagementRead on
	Automation and Agile Service Management

	CHAPTER TWELVE:Getting StartedRead on
	Getting Started

	APPENDIX:Agile Service Management TaxonomyRead on
	Agile Service Management Taxonomy

	About the AuthorRead on
	Jayne Groll, CEO of DevOps InstituteRead on
	About the Author

	The Agile Service Management Guide

