
Using Automation for Generic
Mitigations in Production

Presenter: Leonid Belkind, Co-Founder & CTO, StackPulse

May 20, 2021

● Generic Mitigations

● Automation: Playbooks-as-Code
● Bringing it all together...

● Samples

● Architecture Blueprint

● Main principles

Agenda

Typical timeline of an outage

Monitoring
Alert

Enrichment
/ Hydration Triage

Fix Deploy a
Fix

Fix Deploy a
Fix

Root Cause
Analysis

Generic
Mitigation

Reduction in outage time
Gain in SLO

Root Cause
Analysis

DETECT TRIAGE INVESTIGATE MITIGATE

DETECT TRIAGE INVESTIGATE MITIGATE FIX

So, what kind of Generic Mitigations do you have in mind?

• Rollback (Business Logic, Configuration, Data)
The ability to safely return to a working state. This might sound simple, rolling back a deployment
of a single component, but, actually, performing this in a multi-component environment, with
dependencies and evolving data schemas is not straight forward at all.

• Upsize / Downsize
The ability to increase / decrease amount of replicas of a certain component, while continuously
handling the production traffic. Ability to do that controlling the system externally without invoking
infrastructure and application specialists to perform dangerous changes in production.

• Drain and Flip Traffic
The ability to gradually drain the connections from a specific instance / site / cluster (experiencing
errors) and transfer them to another one. Doing so safely, without involving ad-hoc operations in
production.

Is that it? Of course not

• Quarantine
After identifying a “bad” instance in a cluster, remove it from rotation ensuring that the other instances
continue handling traffic without impact on the users. Then, investigate the root cause of the problem.

• Block List
Block a specific user / account / session / external source of problematic requests to make sure that it
doesn’t impact the overall delivery of your service to the rest. Potentially, add specific quotas / guardrails
on this particular source rather than just blocking it.

• Disable a Noisy Neighbour
Identify the source of “noisy neighbour” (for example, in a database, sending long queries that require too
much resources) and terminate the queries / sessions that impact others.

“Generic Mitigations” is a practice of improving SLOs and returning the
service to operational state faster, without compromising on Root Cause
Analysis and good software engineering practices.

Building Generic Mitigations and testing them (to build confidence to apply
them to production) is a very important aspect of becoming proficient in
building resilient systems.

TL;DR

Playbooks
(a.k.a. Runbooks)
A playbook includes process workflows,
standard operating procedures, and
cultural values that shape a consistent
response — the play.

Enable consistent and prompt responses
to failure scenarios by documenting the
investigation process in playbooks.
Playbooks are the predefined steps to
perform to identify and resolve an issue.

Sample Playbooks

Playbooks – The essense

Playbooks provide (hopefully) step-by-step guides for human operators
to ensure repeatable and consistent response to incident situations.

If we have repetitive technical step-by-step procedures, isn’t automation the
better option to ensure efficiency and consistency?

Google Research on Incident Response
Building Blocks User Journey

* From “Debugging Incidents in Google’s Distributed Systems, Charisma Chan and Beth Cooper, 2020

What are playbooks-as-code
Playbooks-as-code are deterministic manual operator instructions
converted into automation processes

Automate Chat Channels, Notifications

Automate Messaging / Paging to Stakeholders

Automatically Update Incident Based on Enriched Data

Automate Pulling Impact Data from Logs/Context

Automate Diagnostics, Look for Suspicious Signals

Automate Log Queries, Calculate Data on Pulled Logs

Automatically Connect to SCM/CI Pipeline

Automate Remediative Actions / CLI / API / ...

Playbooks-as-Code à The Approach
• Similar to CI/CD Pipelines or Automated Tests, define playbook workflows as high-level

code/configuration

• Apply Software Engineering principles to Incident Response Playbooks
• Break down into modules
• Handle specific tasks, as a part of Incident handling
• Think of arguments / parameters and encapsulation allowing re-use
• Consider sharing between teams in the organization and between organizations
• Visualize / Troubleshoot / Audit execution
• Apply SDLC, GitOps, ...

• Have a Playbooks-as-Code orchestrator separate from our application infrastructure

Playbook-as-Code Sample

- name: stackpulse/public/ssh/command
id: ssh_command
env:

USERNAME: "{{ $.params.UserName }}”
HOSTNAME: "{{ $.params.ServerAddress }}”
COMMAND: df -k
PRIVATE_KEY: '{{ secret "SSH_KEY"}}’

- name: stackpulse/public/slack/message
id: slack_send_message
env:

MESSAGE_TEXT: |
The filesystems for server {{ $.params.ServerAddress }}
```        
{{ $.ssh_command.output }}        
```

RECIPIENTS: "alerts"

RETRIEVE DATA FROM VIRTUAL MACHINE

PROVIDE INFORMATION TO RESPONDERS

Typical Architecture for Playbooks-as-Code
Orchestration

Production
Environments

Monitoring Systems Playbook Orchestrator Communication / Collaboration
Systems

• Well-defined, pre-rehearsed and deterministic processes are a MUST to ensure efficient
handling of incidents

• A “library” of Generic Mitigations ensures ability to reduce outages

• “Documenting Step-by-Step Directions for Human Operators” is not the way to go. There
is a better alternative, as proven by:
• Automated Testing
• Automated Integration / Deployment
• Infrastructure-as-Code
• ...

• Think of actions taking place during incidents / alerts just as of another aspect of “code”
and act accordingly

Summary

Thank
You!
Questions?
leonid@stackpulse.com

mailto:leonid@stackpulse.com

