
Jan Schulte, Solution Architect

Twitter: @_jan_schulte_

Spend Less Time Diagnosing Customer
Issues
& Optimize Engineering Efficiency with
Observability

Hello!

Jan Schulte
Solution Architect @ Epsagon

 Living In Boston
 From Berlin

Agenda

● Microservices: The New Normal

● Why Traditional Observability isn’t effective

● Efficient Observability for Microservices

Microservices: The New Normal

Host-based
Distributed

Host-based
Monolithic

Abstracted-host
Highly Distributed

The Rise of Microservices

Now releases features
“Twice as Fast with Half the Effort”

Companies Winning with Microservices
Enterprise Cloud named “Leader” in seven

Gartner Magic Quadrants and Forester Waves

Pivoted during COVID, doubled valuation
-Crunchbase

Built 32 app e-commerce platform in Seed stage,
raised $43M Series A

-TechCrunch

“Everything fails, all the time”
- Werner Vogels, AWS CTO

Cloud service + 3rd party
APIs are difficult to
troubleshoot

So What’s the Catch?

Thousands of containers,
functions, and services with
a wide variety of behaviors

Logic shifts from the code
within a service to the calls
between microservices

The user finds an issue before you do

Business Impacts

…when there’s a
live problem we
can lose tens of
thousands of
dollars every
hour. Saving 45
minutes in
troubleshooting a
live issue is critical
for the business.Improve operational

and engineering
efficiencies

Downtime costs
on average

DETECT

74%
of issues are found by
customers before Ops

IDENTIFY

Identifying the root cause
is painful in distributed
environments

RESOLVE

IMPROVE

$7,900/min

Combining metrics, logs, and traces
for observability is the only way to
understand complex environments

Metrics tell us the “what”

Logs tell us the “why”

Traces tell us the “where”

Achieving Observability in Microservices

The Need for a New Observability Outlook

APM with Microservice Add-ons
premium price to have partial
workarounds on one platform

Observability Workarounds

Log Aggregators
hours of manually correlation that
bottlenecks team knowledge in one SME

Traditional APM
sees within services, but
not between services

Infrastructure Monitoring
alerts DevOps to issues, but does
not give Devs context to remediate

Manually Instrumented
Distributed tracing
Requires heavy investment in
time and FTE to setup, maintain
and manage edge cases

Where do you start?

Troubleshooting

Manual Log Correlation?

Troubleshooting with Logs Doesn’t Work

Finding specific logs out of
billions of microservice
executions can take hours, or
even days.

Correlating these logs across
dozens of microservices can
be next to impossible.

1
6

Logs?

Metrics?

Things missing?

• How do we correlate between metrics and logs?

• How do we correlate data between different services?

• How do we find the where when something goes wrong?

Observability using Distributed Tracing

What is Distributed Tracing?

“A trace tells the story of a transaction or
workflow as it propagates through a
distributed system.”

Since distributed tracing connects every
request in a transaction, it allows you to
know and see what’s happening to every
service component and app in production

● Built on and for the cloud

● Many ways of communicating

● Huge number of events

● Inaccessible cloud host - not under your control

● Highly distributed -- that is, many components for a single

microservice that make it hard to monitor and troubleshoot.

Fixing issues can be tedious.

Engineering Flywheel + Observability

Quickly troubleshoot
API issues during
Production

Accurately predict
dependencies during
Design

Easily catch business
logic issues during Test

Confidently make
changes to code during
Implementation

Visualize and Understand

Third-party
services

AWS
services

Where Does Our Code Spend Time?

Bring Focus to the Problems

All the things mentioned + Payload information!

Summary

• Microservices-based applications bring
unique benefits and challenges

• Advantages of using Distributed Tracing
approach for AWS and Third-party
services

• Use Observability for
■ Keeping track of the architecture
■ Detecting performance issues and

reduce MTTR
Be PROACTIVE not REACTIVE

Thank you!

