
Comprehensive Observability
via Distributed Tracing

Chinmay Gaikwad, Technical Evangelist

Twitter: @epsagon

Hello!

• Software Engineer, Applications
Engineer, Technical Marketing Engineer:
Intel, IBM, early stage startups

• Traveling, Soccer, Restaurants, Video
Games

What we’ll discuss today

• Microservices: The New Normal and New
Challenges

• Troubleshooting Distributed Environments

• Benefits of Distributed Tracing

WHY?

HOW?

Microservices: The New Normal
and New Challenges

Host-based
Distributed

Host-based
Monolithic

Abstracted-host
Highly Distributed

Extremely hard to monitor and troubleshoot

The Rise of Microservices

Why Microservices?

Source: State of Serverless
Report 2020 - CodingSans

Difficulty Identifying & Troubleshooting Issues
Customer-facing impacts (downtime, latency)
Decreased velocity of new feature releases

Traditional Monitoring from Multiple Sources
Lack of application insights & visibility into errors
Difficulty correlating data

Incomplete Data Insights
Sampling, resulting in gaps
No visibility into payloads

New Paradigm, New Challenges

Troubleshooting Distributed
Applications

Observability: Overview

• Observability: Actively debug a system

• Monitoring: Watch and understand the state of a system

• Monitoring and observability is one of a set of capabilities that
drive higher software delivery and organizational performance

• Who is monitoring and observability for? Everyone!
Source: DORA research

Combining metrics, logs, and traces
for observability is the only way to
understand complex environments

Metrics tell us the “what”

Logs tell us the “why”

Traces tell us the “where”

Achieving Observability in Microservices

● The service implements a simple virtual shop, where
users can send orders for items

● The HTTP server authenticates requests using Auth0
API (3rd party) and pushes them to a Kafka stream

● Another Java container polls the stream and updates
the orders on a DynamoDB table

● Both containers run + Kafka stream runs on Kubernetes

● Users complain about orders that were sent but not
handled

Distributed Troubleshooting Use Case

• Heavy Instrumentation

• Collects only host data

• Collects only metrics

12

Old School Monitoring

More metrics + logs screenshots

Kafka Metrics

DynamoDB Metrics

15

We need more debug data logs

Troubleshooting

Problem arrives

Java Logs

Things missing?

• How do we correlate between metrics and logs?

• How do we correlate data between difference services?

• How do we find the where when something goes wrong?

Distributed Tracing

What is Distributed Tracing?

“A trace tells the story of a transaction or
workflow as it propagates through a
distributed system.”

Since distributed tracing connects every
request in a transaction, it allows you to
know and see what’s happening to every
service component and app in production

● Built on and for the cloud

● Many ways of communicating

● Huge number of events

● Inaccessible cloud host - not under your control

● Highly distributed -- that is, many components for a single

microservice that make it hard to monitor and troubleshoot.

Fixing issues can be tedious.

Benefits of Distributed Tracing

Visualize and Understand

Bring Focus to the Problems

Where Does Our Code Spend Time?

Business Insights

Errors, Categorized

30

Monitor with Trace-based Metrics and Alerts

• OpenTelemetry is a framework, not a service!

• Jaeger (Uber) and Zipkin (Twitter)

• Manual tracing requires heavy lifting: instrumentation and maintenance

• Lack visualizations, context, and tracing through middleware

OpenTelemetry Framework, Open-source Tooling

• Instrument every call (AWS-SDK, http,
postgres, Spring, Flask, Express, …)

• Create a span for every request and
response

• Add context to every span

• Inject and Extract IDs in relevant calls

Generating Traces with OpenTelemetry

Easy to use
5 minute setup, fully

automated, no training or
maintenance required

Runs anywhere
Kubernetes, ECS,

containers, serverless, and
more

Correlated
metrics, logs, traces

with payload visibility

End-to-end
product, from monitoring
to troubleshooting across

Ops and Dev

The Epsagon Solution

• Automated setup and minimal maintenance

• Support any environment
(containers, K8s, cloud, Serverless)

• Connects every request
in a transaction

• Search and analyze your data

• Helps to quickly pinpoint problems

Best Practices for Observability

The Journey to Observability

• Identify your business goals
and architecture model

• Determine your approach: DIY
or managed

• Implement observability
solutions

• Ensure scalability of
observability strategy

Summary

• Distributed applications bring unique benefits
and challenges

• Advantages of using Distributed Tracing
approach

• Observability is critical to:
■ Keep track of the architecture
■ Detect performance issues and reduce

MTTR
■ Reduce Ops, Dev and Opportunity costs

Be PROACTIVE not REACTIVE

Thank you!

To learn more and for our special offer visit:
https://epsagon.com/skilupglobal/

chinmay@epsagon.com

