
Reasons Developers
Struggle with AppSec
and How to Make it Easier
Hint: None of the reasons are “Developers Don’t Care about Security”

$ whoami

Scott Gerlach

● CSO/Co-Founder StackHawk, Inc

● CISO @SendGrid - 3 years

● Sr. Security Arch @GoDaddy - 9 years

● Husband, Dad, Brewer, Golfer, tinkerer

● @sgerlach

● linkedin.com/in/scott-gerlach-kaakaww

AppSec Problem Overview

AppSec = Good; In Theory

Static Code Analysis

● Noisy, often lacks Application Context

● Language Dependant (Don’t get me started on IDE support)

Dynamic Code Analysis

● Better at actual app and context, but still somewhat noisy

● Hard to use

RASP, IAST, WAF

● Wait til someone/something else finds it… in Prod

Problem One:
The Benevolent Security Team

Or Lack Thereof

I wouldn’t want a Junior Developer
making security decisions

Trust Issues

I wouldn’t want to put a new hire
Developer in the position of
making an uninformed risk
decision

Trust and Support

-Scott Gerlach

Let’s Teach Them AppSec
If they know how attackers think, they’ll be able to test like an attacker - Hack Yourself!

● Here’s 11ty Billion new Acronyms to learn

● Also, let’s talk about risk

● But wait before that, do you know the Internet is a bad
place?

● If you have sent any of your Devs to a Security Training
program, who usually gets selected?

“We Need to Model Out a Price Increase”
Have you ever seen the FP&A team teach the basics of accounting to the Exec Team

The Chase to Perfection

● Find 11ty Billion issues -> We have to fix all of these!

● Why? What is the actual risk in the context of the business?

● What if your QA filled 1,000 tickets for bugs that are
unlikely to degrade user experience?

“I’ve never had a satisfying conversation on
why a security issue is ever more important
than a feature. Ever.” - Product VP

If You Don’t Have a Security Team

● Where do I start?

● OMG, forget it. I have other stuff to do.

● Wait, maybe the DevOps team can handle it

Problem Two:
AppSec Tools are built for

Security Teams

Hey! I broke the crap out of your thing. Cool huh!FIX ALL THE THINGS!
I think we’ve got a
SQL Injection here

Security Websters

CSRF: Cross Site Request Forgery

XSRF: Cross Site Request Forgery

Cross-Site Request Forgery (CSRF) is an attack that forces an end user to execute unwanted
actions on a web application in which they’re currently authenticated. With a little help of
social engineering (such as sending a link via email or chat), an attacker may trick the users of
a web application into executing actions of the attacker’s choosing. If the victim is a normal
user, a successful CSRF attack can force the user to perform state changing requests like
transferring funds, changing their email address, and so forth.

We couldn’t decide which one to use, so we use both interchangeably. Isn’t that cool? Anyway, I
hope some of this text helps you understand what this means because we wrote a lot of it.

There are Good AppSec Dev Tools Out There

Developer native tools (in context, how they work)
● Snyk
● Fossa
● npm audit
● GitHub (package inspection, PR Bot)
● OWASP Dependency Check

Lastly, and worst of all,
they all suffer from….

Problem Three:
The Production Bias

Examining the Production-Bias: People

Primary Value: These groups are very focused on the “finding” of vulnerabilities/security bugs. MOAR
findings = MOAR better.

The Security Team Pen Tester

Production is where they know the app the best Production is their only point of access

Repercussions…
● More focused on the numbers of things found, than finding and fixing the right things
● Inefficient — the “finders” are not the “fixers”
● Reinforces an adversarial relationship — “Hey look, I broke your stuff”

*Assuming you have a security team

PLAN

MONITOR

CODE

BUILD

TEST

RELEASE

DEPLOY

OPERATE

Security is either
a blocker

or “playing catch up”

DEV OPS

Examining the Production-Bias: Timing

Also, there’s a major problem with appsec tools that
favor running in production…

THE BUGS ARE
IN PRODUCTION.

Illustration by Stories by Freepik

Getting Started:
The Right Way

How Test-Driven
Security

Should Work

When a team writes code, they know the syntax
is wrong when it won’t compile.

When a team merges code they know there is a
problem when it doesn’t merge.

When a team runs unit tests, they know the
code is wrong when it fails the unit test.

When a team runs integration tests, they
know the code is wrong when it doesn’t work as
designed.

When a team introduces a
vulnerability, they know when it
fails a security test.

PLAN

MONITOR

CODE

BUILD

TEST

RELEASE

DEPLOY

OPERATE

DEV OPS

Right Time: Pre-Production

Security
 Tests

Security Tests

Instrumenting Security Tests into CI/CD
gives engineers immediate feedback.

Adding the ability to test locally allows for
quick iteration in the fix-test loop if a new
bug is identified.

Local Dev & CI/CD

● Security Teams tend to want to “Approve” everything:
What that means is other people can’t make decisions

● Allow technology to spark collaboration between
Development and Security but enable Devs to do their
work

● Business Risk is a collaboration, not a one team knows
the answer game

Engineers Are Smart: Let Them Be Smart

● Engage an Engineering Team and their pipeline

● Choose AN app or service to start

● Choose a technology (SCA, DAST)

● Iterate and expand

Just Start!

Thanks!

scott.gerlach@stackhawk.com @sgerlach https://stackhawk.com

