
1

Understanding the GitOps model.
Tracy Ragan
CEO
DeployHub
@TracyRagan
Tracy@DeployHub.com

22

GitOps Basics

GitOps Goal

GitOps Pros

GitOps Cons

CEO
@TracyRagan

Tracy Ragan

• CEO and Co-Founder – DeployHub, Inc.
• Founding Board member of the CD

Foundation
• Founding Board Member Eclipse Foundation
• DevOps Institute Ambassador,
• Community Director – Ortelius Open Source
• 20+ DevOps Experience.

33

What is GitOps?

GitOps is Continuous
Deployment method for
cloud native applications.

GitOps leverages a
‘repository,’ like Git, to
create an immutable,
air-tight deployment process.

44

GitOps Basics
● Core to GitOps is the ability to organize

deployments around code repositories.
● GitOps is used to manage a Deployment

‘Environment’ repository where deployment
.yaml is managed.

● Deployments are ‘pull’ based. A GitOps Operator
interrogates the state of the cluster compared to
the ‘Environment’ repository. When different, it
pulls the updates.

55

GitOps Basics

HipsterStore ENV Repo

● CartService.yaml

● Shipping.yaml

● Payment.yaml

● HipsterFrontEnd.yaml

GitOps
Operator

CartService Shipping

Hipster
FrontEnd

Payment

Hipsterstore.com

Docker
Registry

Desired State in Git

Developer updates code repository, registers container image and
updates the deployment .yaml in the Environment Repository to use the
new container version referenced by a tag or SHA.

66

Goals of GitOps
Updates are:
• Automated and Repeatable - eliminate manual touch.
• Audited - track changes via versions.
• Deterministic with convergence – Kubernetes state is

determined by what is in the repository.

A Deployment that is 100%
hermetic and immutable.

77

Pros - Automated
● Airtight must be automated and is naturally repeatable.

○ The GitOps Operator makes all changes to the cluster. No manual changes or manual actions
are made to the Kubernetes Environment, or any Applications.

○ The management of the .yaml in a source repository is what creates the ‘airtight’ or hermetic
and immutable deployments.

○ With the .yaml file locked down in a source repository, you know that no new change has been
introduced before a deployment. This creates a high degree of repeatability.

88

Pros - Audited

● Tracking who did what, when and why
is the benefit of a source repository.

● With the deployment .yaml managed
this way, you have visibility into what
changed between any two .yaml files
giving some insight into differences.

99

Pros - Deterministic with Convergence

● The State of Kubernetes is determined by the
‘Environment’ Repository.

● The GitOps Operator always brings the system
back into sync. If a manual update is made in the
Kubernetes system, it is corrected and brought
back into the correct state based on the
‘Environment’ repository.

1010

Cons - Pipeline Progression

Dev Test Prod

Version 5Version 8Version 10

GitOps does not handle a ‘promotion’ of changes from Development through Production.
While we may well eventually move away from this model, today it is core to managing a
pipeline.

1111

GitOps Environment Repository Branches and
the Pipeline

CartService.yaml

Dev

Prod

Test

A different version of the Cart
service is represented by
branches.

Each cluster, regardless of
what the cluster is used for, is
managed by a branch.

In another words, if you have
many Test Environments, you
may have many branches.

1212

Cons - Sharing

Each Application’s deployment manifest is managed (.yaml) in separate
‘Environment’ repositories which creates duplicate .yaml files for a single
microservice.

For a shared microservice, this causes drift between the application teams. One
team’s update can then impact another team’s application if they are running in
the same cluster. If different clusters, you have branched the microservice
unintentionally.

HipsterStore Repo
• CartService.yaml
• Shipping.yaml
• Payment.yaml
• HipsterFrontEnd.yaml

CandyStore Repo
• CartService.yaml
• Shipping.yaml
• Payment.yaml
• CandyFrontEnd.yaml

1313

Cons - Security
● While the operator makes the changes to

the Kubernetes cluster, anyone with
access to the repository can update the
.yaml.

● To fix this, a process to approve a ‘pull
request’ or a way to manage an update to
a .yaml file for a change is required
(handled via CD Pipeline).

1414

Cons – Scaling and Reporting
Critical data is managed in the .yaml scripts that cannot be
easily reported:

○ Relationship data and the blast radius of a single microservice
update is hidden.

○ Inventory reports across all clusters are not provided.

○ A single “Environment” repository does not support multiple clusters
that may require unique values. In this model we find repository
sprawl to support an “Environment” repository per cluster. More
.Yaml scripts required.

1515

Con – Not Unscripted
● The GitOps model requires the manual updates of .yaml files. As we move

into managing thousands of microservices, this method will bring along
thousands of .yaml files with multiple versions.

1616

CNCF GitOps Working Group
https://github.com/gitops-working-group/gitops-working-group

A GitOps System Defined
● “The runtime manages itself autonomously, and the Administrator interacts

with the Repositories if they wish to modify the desired state of the system.”

○ One or more Runtime environments consisting of resources under management.

○ In each Runtime, management Agents to act on resources according to security policies.

○ One or more software Repositories for storing deployable artifacts that may be loaded into the runtime environments, eg.
configuration files, code, binaries and packages.

○ One or more Administrators who are responsible for operating the runtime environments i.e., installing, starting, stopping and
updating software, code, configuration, etc.

○ A set of policies controlling access and management of repos, deployment, runtimes.

https://github.com/gitops-working-group/gitops-working-group

1717

Key Takeaways
● At the core of GitOps is the concept of an immutable deployment process that declares

the state of your Kubernetes cluster.

● GitOps leverages the use of existing tools, such as Git, to build out a consistent
continuous deployment model, with build repeatability.

● As we move into larger environments with thousands of microservices, GitOps may
struggle with scaling.

● GitOps will become a common term to reference deployment solutions that address the
broader continuous deployment problem set.

1818

LinkedIn: https://www.linkedin.com/in/tracy-ragan-oms/
Twitter: @TracyRagan
Calendar: https://drift.me/tracyragan/meeting/coffeechat
Email: Tracy@DeployHub.com
Dig In at: DeployHub.com or Ortelius.io

https://www.linkedin.com/in/tracy-ragan-oms/
https://twitter.com/TracyRagan
https://drift.me/tracyragan/meeting/coffeechat
mailto:TracyRagan@DeployHub.com

