
1

Cracking the Case:
How to Migrate from
Monoliths to Microservices

Andrew Chee
Senior Solutions Engineer
Lightstep
@LightstepHQ
andrew@lightstep.com

CONFIDENTIAL | LIGHTSTEP 2020 2

Hi, I’m Andrew
a Solutions Engineer at

Lightstep

CONFIDENTIAL | LIGHTSTEP 2020

Quick Agenda

1. Walk through general service migration strategy (with an example
architecture) (15 min)

2. How to use observability to de-risk a migration (10 min)

3. What does modern observability for microservices look like? (5 min)

3

CONFIDENTIAL | LIGHTSTEP 2020

Our Example Monolith

4

Add item to cart

Pay

Log in

Email user

Cart storage

Inventory storage

Auth 3rd party

SNS provider

Account storage

Payment engine

G
at

ew
ay

→Todo: Split out payments into its own microservice, integrate it with a new 3rd party

API endpoints

External calls to other
infrastructure/services

Container

CONFIDENTIAL | LIGHTSTEP 2020

Add item to cart

Pay

Log in

Email user

Cart storage

Inventory storage

Auth 3rd party

SNS provider

Account storage

Payment 3rd party

G
at

ew
ay

API endpoints

External calls to other
infrastructure/services

Container

Our Goal State

5

→ Payments is split out from the monolith, with no downtime to upstream services
and end-users

Auth 3rd party

Cart storage

CONFIDENTIAL | LIGHTSTEP 2020

Migration Exercise

● Scenario: Current payments are handled in the monolith, we want
something horizontally scalable, integrated with a new 3rd party,
operating asynchronously from the rest of the stack

● Tip: Define must-have solutions upfront. Start thinking about
SLOs upfront.

● Example must-haves: More scalability, more reliability, integrate the
new 3rd party, zero downtime

6

CONFIDENTIAL | LIGHTSTEP 2020

Migration Strategy: SLOs

● Everyone has opinions on SLOs, but no one knows the best way to
define them. Here is some general guidance...

● Tip: Define your internal service SLOs based on:

a. Services upstream that rely on your services

b. Services downstream that you rely on (protect your team from blame)

● Tip: Define executive SLOs based on critical end-user business
operations (what will cause loss of time/money/users if it breaks?)

7

You can use Observability systems that leverage tracing and metrics to
measure and define end-to-end SLO’s.

CONFIDENTIAL | LIGHTSTEP 2020

Migration Strategy: SLOs

8

API endpoints

External calls to other
infrastructure/services

Container

Pay

Payment 3rd party

Auth 3rd party

Cart storage

Your Service’s SLO
Provider/Infra

SLOs

End-user
clicks pay
button

Critical business
operation SLO

Example provider SLA:: Alert when the 3rd party payment service error rate > 0.1%

Example internal SLA: Alert when /pay endpoint’s p99 > 5 sec

Example critical SLA: Alert when clicking Pay button on a validated payment option’s error rate > 1%

CONFIDENTIAL | LIGHTSTEP 2020

Migration Strategy: Operations

● Make sure containerization, configuration management, permissions
management and CICD is set up in a repeatable way for new
services. Add any security must-haves and do rough cost analysis
upfront.

● Tip: This may seem obvious, but use a familiar programming
language for the service unless there’s a good reason not to.

9

Q: When should you use serverless/lambda?

Depends on how familiar your team is with the tech and how complex the
business logic is. If it takes > 30 seconds to process certain requests, then
consider using short-lived container (ex. Fargate) or a microservice.

CONFIDENTIAL | LIGHTSTEP 2020

Migration Strategy: API Contract

● How is the new service going to be exposed to the outside world,
what kind of requests does it need to handle to support any new
functionality?

● Understand and diagram existing behavior that will be migrated out
of the monolith. Understand current performance limitations, and
add these to the must-have list (possibly attach SLO’s to enforce)

● Tip: Use something like Swagger, if you have time and want to
enforce API stability.

You can use APMs with tracing to measure and define end-to-end SLO’s
You can use APMs with tracing to measure and define end-to-end SLO’s

10

You can use Observability systems that leverage tracing to understand
current performance limitations and bottlenecks.

CONFIDENTIAL | LIGHTSTEP 2020

Migration Strategy: Dataflow

● Think about data models: In our example, what is the new logic and
data model for the 3rd party service we are integrating with? In
general, what external infrastructure are we relying on in our new
service?

● Tip: Brainstorm risks upfront. De-risking activity could fall under
benchmarking, throughput analysis of current system, management
plans and playbooks for any new external infrastructure or services

● Tip: Create a plan for how to migrate the old service to the new
one. Plan for the plan to fail. Will it be a % of traffic? One endpoint
at a time? When will the migration be considered confidently
“done”? How will the service rollback?

11

What you can control

What you are
responsible for

Stress (n): responsibility without control

CONFIDENTIAL | LIGHTSTEP 2020 12

The Microservice Effect

CONFIDENTIAL | LIGHTSTEP 2020

Observability Challenges

● Microservices introduce complexity. We’re going from something
that’s relatively straightforward to reason about (mostly due to
coupling) into decoupled, distributed parts

● Microservices introduce more points of failure by adding
additional service-to-service boundaries and spreading out calls to
infrastructure and external services.

● Examples of real “deep” systems from our platform →

13

CONFIDENTIAL | LIGHTSTEP 2020

De-risking for Code Complexity

Leverage Observability for:

● Identifying which code paths and dependencies in the monolith are
going to be migrated to the microservice

● Verifying when those code paths are able to be deprecated and no
longer serving traffic

● Verifying during deployments of the new service (and old monolith)
that functionality isn’t regressing unexpectedly

16

CONFIDENTIAL | LIGHTSTEP 2020

De-risking for Performance Regressions

Leverage Observability for:

● Identifying bottlenecks, both in the monolith and in the new
microservice

● Collecting throughput, error rate and response time requirements
that the new microservice needs to support

● Collecting throughput, error rate and response time requirements
for new external infrastructure and 3rd party services

17

CONFIDENTIAL | LIGHTSTEP 2020

De-risking for External Dependencies

Leverage Observability for:

● Enabling developers to see how the new service code is performing
in real time as it’s being built. As soon as a developer creates code
calling a new external service, they should be able to

a. Verify the external service is responding

b. Collect performance metrics on this external service (such as status
codes, response time, error rate)

● Wrapping the new service in easily debuggable and understandable
SLOs, to give everyone a clear picture on the state of the world both
during and after completing the code migration

18

19

