
1

Observability

A Socio- Engineering-Technology Problem
Name: Shivagami Gugan

DevOps Institute Ambassador

Head of SRE & Cloud

shivagamigugan@gmail.com

22

A Practitioner’s view

Observability : Why is it a Socio – Engineering – Technology Problem?

Agenda

Shivagami Gugan

• Technology Transformation Leader, Aviation
Technologist, Head of Software Engineering
bootstrapped and built Software Architects and
Engineers who deliver mission-critical software

• Led IT Digitisation, DevOps and Head of Site
Reliability engineering and Cloud at Emirates Group
IT

• DevOps Institute Ambassador and Middle East
Chapter member

3

Key Takeaways

Why is Observability a BIGGER problem now ? What has changed?

Is Observability the missing link that will get you “the Zen of

Performance” ?

Why is Observability such a Socio-Technology issue?

44

Performance Impacts the Business

1. Walmart found that for every 1

second improvement in page load

time, conversions increased by 2%

2. Mobify found that each 100ms

improvement in their homepage's

load time resulted in a 1.11%

increase in conversion

55

Performance in Complex Architectures

● Systems have become inherently very complex

● There is a whitespace in the area of “Integrated Visibility”

Distributedness

6

Monitor does not go away

● Business metrics

● Demand

● Workload

○ Fault/Errors

○ Availability

○ Performance

● Resource metrics
Correctness, Speed and Consistency of a Hairball Architecture makes Monitoring OUTDATED for complex

Systems

7

Logs, Events, Metrics and Tracing

Digital Business

• Business Metrics View

– Checkout Abandonment

– Customer Churn

– Revenue per Location

Demand & Workload

• RED Metrics View

– Request throughput

– Errors

– Duration (Latency,
Response time)

Resources

• USE Metrics View

– Utilization

– Saturation

– Errors

Context

• Distributed Tracing

– Dependency on downstream

– Service Maps

– End-to-End Transaction
(hotspots, logic flaws)

Satura

tion

Latency

Errors

Traffic

Google’s Golden Signals

As applications become more

distributed, multiple

dependencies, and ephemeral

BUILD BETTER INSIGHT INTO

YOUR SYSTEM

88

Perspective bias

99

Law of requisite variety

“If a system is to be stable, the number of states of its control mechanism must

be greater than or equal to the number of states in the system being controlled”

- W. Ross Ashby

What are the Varieties?

Version changes: deployed upgrades of service versions

Topological changes: new components that appear and disappear in the system landscape and
affect dependencies between existing running components.

Component property changes: changing labels and tags of components

1010

Observability of Complex Systems

1111

Cardinality and Dimensionality

• System workload is many-dimensional data, not just one-dimensional values over

time; and very high-cardinality.

• Traditional time series databases were designed with a system-centric worldview

and thus weren’t architected to store or query workload data. If Pre-aggregation

happens before storing data, there is a fundamental problem.

• Using traditional tools to measure, inspect, and troubleshoot customers’

experiences is basically impossible because of pre-aggregation and cardinality

limitations.

12

Practitioner’s view of Observability

If you miss the State changes, you will not
know which workload is being serviced by
which resource.

With Transience, with every spin up of
resources, entity changes with every state
change

Remember, Aggregation is the biggest
enemy that will “kill” variety, making the
information totally useless

Complexity

1313

Measure every element in the Request lifecycle

1414

Distributed Tracing
Provides Context

Logs and Metrics will

not show the real

problem

Single request may

cause too many

downstream requests

15

Observability-driven development

● Dev and Ops war will go only one way, the Dev way

● Give Developers the privilege to “ You Build, You Run, You Monitor”

● Merge will happen only when proper Observability hooks are baked in the

code

● Never accept a PR until you learn the instrumentation

● Technology should enable distributed tracing, and tracing the breadcrumbs

built in the system

● This is making DevOps fuller -> Each developer needs to own their code, with

the ability to deploy it and debug it in production

16

The slowest constraint

17

Do it like an SRE: Observability has to be at the

Service Level

1818

SLI driven Observability

1919

2020

21

It’s a Socio-Engineering-Technology problem

● Observability-driven-development (ODD)

● Incentivise the developer to capture everything

● Observability is the 1st step of the new world good coding practices

● SLI guided approach across multiple services

● Technology that will allow high Cardinality with little or no Aggregation

● Health checks, Logs, Metrics, Distributed, Request end to end tracing

● Not Manual/Toil – have a SRE approach

● ODD leads to true DevSecOps (for e.g. threat modelling)

● Leading to Autonomous AI

2222

THANK YOU!

Meet Me in the Network

Chat Lounge for Questions

Shivagami Gugan

